Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7(2): 380-398 [PMID: 25815122 DOI: 10.4252/wjsc.v7.i2.380]
Corresponding Author of This Article
Charles Nicaise, PhD, Assistant Professor, Laboratory Neurodegeneration and Regeneration, URPhyM-NARILIS, Faculty of Medicine, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium. charles.nicaise@unamur.be
Research Domain of This Article
Neurosciences
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Stem Cells. Mar 26, 2015; 7(2): 380-398 Published online Mar 26, 2015. doi: 10.4252/wjsc.v7.i2.380
Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury
Charles Nicaise, Dinko Mitrecic, Aditi Falnikar, Angelo C Lepore
Charles Nicaise, Laboratory Neurodegeneration and Regeneration, URPhyM-NARILIS, Faculty of Medicine, University of Namur, B-5000 Namur, Belgium
Dinko Mitrecic, Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb, 10000 Zagreb, Croatia
Aditi Falnikar, Angelo C Lepore, Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University Medical College, Philadelphia, PA 19107, United States
Author contributions: Nicaise C, Mitrecic D, Falnikar A and Lepore AC wrote and critically reviewed the paper.
Supported by The NINDS, No. #1R01NS079702 (to Angelo C Lepore).
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Charles Nicaise, PhD, Assistant Professor, Laboratory Neurodegeneration and Regeneration, URPhyM-NARILIS, Faculty of Medicine, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium. charles.nicaise@unamur.be
Telephone: +32-81-724256 Fax: +32-49-6963499
Received: July 29, 2014 Peer-review started: July 29, 2014 First decision: September 4, 2014 Revised: October 21, 2014 Accepted: November 17, 2014 Article in press: November 19, 2014 Published online: March 26, 2015 Processing time: 234 Days and 8.8 Hours
Core Tip
Core tip: Amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) result in incurable neurological dysfunction due to loss of spinal motor neurons and axonal degeneration, amongst other mechanisms. Astrocytes are increasingly recognized as being necessary for neuroprotection and regeneration in the central nervous system as they promote axonal growth and deliver essential neurotrophic factors under both physiological and pathophysiological conditions. Given the central role played by astrocytes, we gathered convincing results from ALS and SCI literature that argue in favor of stem cell-based astrocyte replacement therapies and stress the scientific community to investigate more deeply the molecular understanding of astrocyte biology.