Basic Study
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jan 26, 2015; 7(1): 195-207
Published online Jan 26, 2015. doi: 10.4252/wjsc.v7.i1.195
Early gestation chorionic villi-derived stromal cells for fetal tissue engineering
Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang
Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
Author contributions: Lankford L, Selby T, Becker J and Ryzhuk V performed the experiments; Long C provided crucial assistance in data analysis and figure preparation; Lankford L, Farmer D and Wang A designed this study; all authors contributed to manuscript writing and editing.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Aijun Wang, PhD, Assistant Professor, Department of Surgery, University of California, Davis Health System, 4625 2nd Ave., Research II, Room 3005, Sacramento, CA 95817, United States. aawang@ucdavis.edu
Telephone: +1-916-7030422 Fax: +1-916-7030430
Received: September 5, 2014
Peer-review started: September 6, 2014
First decision: October 14, 2014
Revised: November 4, 2014
Accepted: November 7, 2014
Article in press: December 16, 2014
Published online: January 26, 2015
Core Tip

Core tip: In this study we characterize mesenchymal stromal cells derived from early gestation human placenta chorionic villi (PMSCs) for the purpose of fetal tissue engineering. We examine cell expansion in early passages from chorionic villus sampling-size tissue samples, as well as PMSC surface marker expression, multipotency, intracellular protein expression, protein secretion, and compatibility with delivery vehicles and tracking methods often used for in vivo experimentation. We show that early gestation PMSCs are excellent candidates for future tissue engineering studies, particularly as it applies to in utero therapy for congenital anomalies.