Review
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jan 26, 2015; 7(1): 1-10
Published online Jan 26, 2015. doi: 10.4252/wjsc.v7.i1.1
Alternative splicing: An important mechanism in stem cell biology
Kenian Chen, Xiaojing Dai, Jiaqian Wu
Kenian Chen, Xiaojing Dai, Jiaqian Wu, The Vivian L Smith Department of Neurosurgery, The Center for Stem Cell and Regenerative Medicine, University of Texas Medical School at Houston, Houston, TX 77030, United States
Author contributions: Chen K, Dai X and Wu J contributed to this paper.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Jiaqian Wu, PhD, The Vivian L Smith Department of Neurosurgery, The Center for Stem Cell and Regenerative Medicine, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, United States. jiaqian.wu@uth.tmc.edu
Telephone: +1-713-5003421 Fax: +1-713-5002424
Received: July 23, 2014
Peer-review started: July 24, 2014
First decision: August 28, 2014
Revised: September 3, 2014
Accepted: September 17, 2014
Article in press: December 16, 2014
Published online: January 26, 2015
Core Tip

Core tip: Alternative splicing (AS) produces multiple transcript isoforms from a single gene, and the regulation of cell-type-specific splicing pattern is crucial for the properties and functions of cells, including pluripotent stem cells. A better understanding of the role of AS in stem cell pluripotency maintenance and differentiation will offer potential new approaches for enhancing the production of induced pluripotent stem cells and/or better control of cell differentiation for research or therapeutic purposes. In this brief review, we provide a timely update of recent studies related to stem cell regulation and splicing in a genome-wide scale.