Basic Study
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Sep 26, 2023; 15(9): 931-946
Published online Sep 26, 2023. doi: 10.4252/wjsc.v15.i9.931
Integrin beta 3-overexpressing mesenchymal stromal cells display enhanced homing and can reduce atherosclerotic plaque
Hai-Juan Hu, Xue-Ru Xiao, Tong Li, De-Min Liu, Xue Geng, Mei Han, Wei Cui
Hai-Juan Hu, Tong Li, De-Min Liu, Xue Geng, Wei Cui, First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000, Hebei Province, China
Xue-Ru Xiao, Department of Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang 050030, Hebei Province, China
Mei Han, Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
Author contributions: Cui W and Han M designed and coordinated the study; Hu HJ, Xiao XR, Li T, Liu DM and Geng X performed the experiments and acquired and analyzed data; Cui W interpreted the data; Hu HJ and Liu DM wrote the manuscript; all authors revised the manuscript and approved the final version of the article.
Supported by National Natural Science Foundation of China, No. 82100301; and Key Science and Technology Research Program of Hebei Provincial Department of Health, No, 20221014.
Institutional review board statement: The study was reviewed and approved by the Ethical Committee of the Second Hospital of Hebei Medical University, No. 2021-R496.
Institutional animal care and use committee statement: Laboratory Animal Use and Management Committee has been carefully discussed and voted on May 27, 2021 for the subject animal-related content, 10 voters, 10 people suggested a formal experiment, and made the following recommendations. The design is reasonable, in line with the animal requirements. The ethics committee agreed to carry out a formal experiment.
Informed consent statement: All study participants or their legal guardian provided informed written consent about personal and medical data collection prior to study enrolment.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Wei Cui, PhD, Professor, First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, No. 215 Heping West Road, Shijiazhuang 050000, Hebei Province, China. cuiweihb2h@163.com
Received: May 31, 2023
Peer-review started: May 31, 2023
First decision: June 14, 2023
Revised: June 22, 2023
Accepted: August 23, 2023
Article in press: August 23, 2023
Published online: September 26, 2023
Processing time: 116 Days and 15.6 Hours
Core Tip

Core Tip: Mesenchymal stem cell (MSC) transplantation is considered a new treatment for atherosclerosis. However, research regarding homing of MSCs to atherosclerotic lesions is insufficient. Here, we transplanted integrin beta 3 (ITGB3)-overexpressing MSCs into a mouse model of atherosclerosis. ITGB3-overexpressing MSCs were more greatly accumulated in atherosclerotic plaques. These MSCs prevented plaque progression by shifting the local cytokine profile. The use of ITGB3-overexpressing MSCs may be a novel tool to treat atherosclerosis.