Copyright
©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Nov 26, 2023; 15(11): 1017-1034
Published online Nov 26, 2023. doi: 10.4252/wjsc.v15.i11.1017
Published online Nov 26, 2023. doi: 10.4252/wjsc.v15.i11.1017
Dissecting molecular mechanisms underlying ferroptosis in human umbilical cord mesenchymal stem cells: Role of cystathionine γ-lyase/hydrogen sulfide pathway
Bin Hu, Xiang-Xi Zhang, Tao Zhang, Wan-Cheng Yu, Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
Co-first authors: Bin Hu and Xiang-Xi Zhang.
Author contributions: Hu B and Zhang XX contributed equally to this work; Yu WC conceived the research; Hu B and Yu WC participated in the design of the study, performed the statistical analysis, and helped to draft the manuscript; Hu B, Zhang XX, Zhang T, and Yu WC performed the experiments; and all authors participated in discussing and revising the manuscript, and approving the final manuscript.
Supported by the Natural Science Foundation of Shandong Province of China , No. ZR2021QH179 and ZR2020MH014 .
Institutional animal care and use committee statement: Animal procedures were performed in compliance with the Institutional Animal Care and Use Committee of Shandong Provincial Hospital Affiliated to Shandong First Medical University (No. 2022-333).
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Data sharing statement: No additional unpublished data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Wan-Cheng Yu, Doctor, MD, Postdoc, Surgeon, Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan 250062, Shandong Province, China. yuwancheng123@126.com
Received: September 2, 2023
Peer-review started: September 2, 2023
First decision: October 19, 2023
Revised: October 25, 2023
Accepted: November 17, 2023
Article in press: November 17, 2023
Published online: November 26, 2023
Processing time: 82 Days and 13.7 Hours
Peer-review started: September 2, 2023
First decision: October 19, 2023
Revised: October 25, 2023
Accepted: November 17, 2023
Article in press: November 17, 2023
Published online: November 26, 2023
Processing time: 82 Days and 13.7 Hours
Core Tip
Core Tip: Regulation of the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in human umbilical cord mesenchymal stem cells (HUCMSCs) contributes to the inhibition of ferroptosis and improves the suppressive effect of HUCMSCs on vascular remodelling in hypoxia-induced pulmonary arterial hypertension (PAH) mice. Moreover, the protective effect of the CSE/H2S pathway against ferroptosis in HUCMSCs was mediated via S-sulfhydrated Kelch-like ECH-associating protein 1/nuclear factor erythroid 2-related factor 2 signalling. The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.