Abu-El-Rub E, Khasawneh RR, Almahasneh F. Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles. World J Stem Cells 2022; 14(7): 513-526 [PMID: 36157526 DOI: 10.4252/wjsc.v14.i7.513]
Corresponding Author of This Article
Ramada R Khasawneh, PhD, Associate Professor, Department of Anatomy and Histology, Yarmouk University, Shafiq Irshidat St, Irbid 21163, Jordan. ramada@yu.edu.jo
Research Domain of This Article
Nanoscience & Nanotechnology
Article-Type of This Article
Minireviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Stem Cells. Jul 26, 2022; 14(7): 513-526 Published online Jul 26, 2022. doi: 10.4252/wjsc.v14.i7.513
Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles
Ejlal Abu-El-Rub, Ramada R Khasawneh, Fatimah Almahasneh
Ejlal Abu-El-Rub, Fatimah Almahasneh, Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
Ramada R Khasawneh, Department of Anatomy and Histology, Yarmouk University, Irbid 21163, Jordan
Author contributions: Abu-El-Rub E and Khasawneh RR conceptualized the review subtopics; Abu-El-Rub E, Khasawneh RR and Almahasneh F collected the literature used to write the review and drafted the manuscript; Abu-El-Rub E revised and formatted the content of the manuscript and verified spelling, punctuation and grammatical errors; all authors have read and approved the final manuscript.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ramada R Khasawneh, PhD, Associate Professor, Department of Anatomy and Histology, Yarmouk University, Shafiq Irshidat St, Irbid 21163, Jordan. ramada@yu.edu.jo
Received: March 17, 2022 Peer-review started: March 17, 2022 First decision: April 25, 2022 Revised: May 18, 2022 Accepted: June 22, 2022 Article in press: June 22, 2022 Published online: July 26, 2022 Processing time: 130 Days and 14.8 Hours
Core Tip
Core Tip: Mesenchymal stem cells (MSCs) have been thoroughly investigated in many disease models and they showed great therapeutic potential. Despite the confirmed therapeutic abilities of MSCs, many challenges still exist which hinder the transfer of these cells to the treatment guidelines. The incorporation of magnetic nanoparticles (MNPs) with MSCs has been reported to increase the therapeutic outcomes of MSCs by solving major challenges that impede their long–term regenerative effects. MNPs are able to improve the ability to track and deliver MSCs and to increase their migration, homing, survival and differentiation in vitro and in vivo. This may help increase the success rate of MSCs transplantation and thus increase the chance to include these cells in the treatment guidelines used in different clinical settings.