Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World J Stem Cells 2022; 14(7): 453-472 [PMID: 36157530 DOI: 10.4252/wjsc.v14.i7.453]
Corresponding Author of This Article
Antonio Casado-Díaz, PhD, Research Scientist, Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Avda, Menéndez Pidal, s/n, Córdoba 14004, Spain. bb1cadia@uco.es
Research Domain of This Article
Medicine, Research & Experimental
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Stem Cells. Jul 26, 2022; 14(7): 453-472 Published online Jul 26, 2022. doi: 10.4252/wjsc.v14.i7.453
Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles
Victoria Pulido-Escribano, Bárbara Torrecillas-Baena, Marta Camacho-Cardenosa, Gabriel Dorado, María Ángeles Gálvez-Moreno, Antonio Casado-Díaz
Victoria Pulido-Escribano, Bárbara Torrecillas-Baena, Marta Camacho-Cardenosa, María Ángeles Gálvez-Moreno, Antonio Casado-Díaz, Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
Gabriel Dorado, Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
Author contributions: Pulido-Escribano V, Torrecillas-Baena B, and Casado-Díaz A designed the study; Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, and Casado-Díaz A conducted reviews and literature analyses; Dorado G, Gálvez-Moreno MÁ, and Casado-Díaz A drafted and edited; all authors reviewed and approved the final version.
Supported by“Instituto de Salud Carlos III” (ISCIII), “Ministerio de Economía y Competitividad” (MINECO) and European Union (EU), No. PI18/01659 and No. PI21/01935.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Antonio Casado-Díaz, PhD, Research Scientist, Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Avda, Menéndez Pidal, s/n, Córdoba 14004, Spain. bb1cadia@uco.es
Received: March 17, 2022 Peer-review started: March 17, 2022 First decision: April 18, 2022 Revised: May 2, 2022 Accepted: July 11, 2022 Article in press: July 11, 2022 Published online: July 26, 2022 Processing time: 130 Days and 15.7 Hours
Core Tip
Core Tip: Mesenchymal stem-cells (MSC)-derived EV have a high therapeutic interest. The composition of extracellular vesicles (EV) depends on the state of source cells, generating physiological changes in recipient cells. MSC culture preconditioning affects the cargos of EV. Thus, hypoxia exposition leads to hypoxia-inducible factor induction and regulation of hundreds of genes involved in processes such as inflammation, migration, proliferation, differentiation, angiogenesis, metabolism, and apoptosis. This affects the contents of secreted EV. Accordingly, numerous studies have shown that EV from MSC under hypoxia have a higher regenerative capacity than those obtained under normoxia. Therefore, the former have a high clinical potential in different pathologies.