Copyright
©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Feb 26, 2022; 14(2): 214-218
Published online Feb 26, 2022. doi: 10.4252/wjsc.v14.i2.214
Published online Feb 26, 2022. doi: 10.4252/wjsc.v14.i2.214
Physical energy-based ultrasound shifts M1 macrophage differentiation towards M2 state
Hao-Cheng Qin, Yu-Lian Zhu, Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
Zhi-Wen Luo, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
Author contributions: Qin HC and Luo ZW conducted the original search, wrote the first draft of the paper, and contributed to subsequent revisions of the manuscript; Zhu YL generated the original idea of this study and provided suggestions; Qin HC and Luo ZW made equal contributions to the work.
Conflict-of-interest statement: The authors declare no conflict of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Yu-Lian Zhu, MD, PhD, Chief Doctor, Doctor, Professor, Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040, China. zyljully@163.com
Received: November 5, 2021
Peer-review started: November 5, 2021
First decision: December 4, 2021
Revised: December 12, 2021
Accepted: February 16, 2022
Article in press: February 16, 2022
Published online: February 26, 2022
Processing time: 111 Days and 21 Hours
Peer-review started: November 5, 2021
First decision: December 4, 2021
Revised: December 12, 2021
Accepted: February 16, 2022
Article in press: February 16, 2022
Published online: February 26, 2022
Processing time: 111 Days and 21 Hours
Core Tip
Core Tip: Because physical energies can contribute to the recovery of tissue damage in multiple aspects, it is widely used in clinical practice. The unique insights of the article “Unveiling the Morphogenetic Code: A New Path at the Intersection of Physical Energies and Chemical Signaling” inspired the direction of our experiments concerning the impact of physical energies on stem cells. In the future, we will conduct experiments and analytical techniques to reveal the mechanism of the regulatory effects behind ultrasound.