Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells 2022; 14(2): 200-213 [PMID: 35432731 DOI: 10.4252/wjsc.v14.i2.200]
Corresponding Author of This Article
Jan Jeroen Vranckx, MD, PhD, Professor, Department of Plastic, Reconstructive and Aesthetic Surgery, KU-Leuven University Hospitals, Herestraat 49, Leuven 3000, Belgium. jan.vranckx@uzleuven.be
Research Domain of This Article
Transplantation
Article-Type of This Article
Systematic Reviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Stem Cells. Feb 26, 2022; 14(2): 200-213 Published online Feb 26, 2022. doi: 10.4252/wjsc.v14.i2.200
Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars
Sophie Vanderstichele, Jan Jeroen Vranckx
Sophie Vanderstichele, Master in Medicine, KUL Leuven University, Leuven 3000, Belgium
Jan Jeroen Vranckx, Department of Plastic, Reconstructive Surgery, KU-Leuven University Hospitals, Leuven 3000, Belgium
Author contributions: The selection of articles was performed independently by both authors; Vanderstichele S conducted the systematic review, with Vranckx JJ providing scientific content and supervision; all authors have read and approved the final manuscript.
Conflict-of-interest statement: This article is not subject to any conflict of interest or financial disclosure.
PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Jan Jeroen Vranckx, MD, PhD, Professor, Department of Plastic, Reconstructive and Aesthetic Surgery, KU-Leuven University Hospitals, Herestraat 49, Leuven 3000, Belgium. jan.vranckx@uzleuven.be
Received: February 23, 2021 Peer-review started: February 23, 2021 First decision: April 20, 2021 Revised: May 1, 2021 Accepted: February 15, 2022 Article in press: February 15, 2022 Published online: February 26, 2022 Processing time: 367 Days and 1.8 Hours
Core Tip
Core Tip: The goal of this review is to elucidate the potential mechanisms of action of fat grafting, and more specifically of adipose-derived stem cells (ADSCs), in hostile environment. Why can fat grafts turn the sclerotic environment after intense radiotherapy, burns or surgical trauma into a soft zone that can be further restored and reconstructed? In doing so, this review aims to complement existing literature by delivering an integrated approach to explain the positive effect of ADSCs on fibrosis, considering all 3 main fibrotic aspects, i.e., extracellular matrix accumulation, innate and adaptive immune response and vascularization. It aims at acknowledging the complexity and reciprocal impact these aspects have, both from a clinical as well as a molecular point of view. While available literature so far only focused on a single one of these aspects, the question remains whether an integrated approach and explanation on these combined levels could improve the effectiveness and application areas of this treatment.