Copyright
©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Dec 26, 2022; 14(12): 822-838
Published online Dec 26, 2022. doi: 10.4252/wjsc.v14.i12.822
Published online Dec 26, 2022. doi: 10.4252/wjsc.v14.i12.822
SPOC domain-containing protein 1 regulates the proliferation and apoptosis of human spermatogonial stem cells through adenylate kinase 4
Dai Zhou, Fang Zhu, Zeng-Hui Huang, Huan Zhang, Li-Qing Fan, Jing-Yu Fan, Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
Dai Zhou, Zeng-Hui Huang, Huan Zhang, Li-Qing Fan, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, Hunan Province, China
Dai Zhou, College of Life Sciences, Hunan Normal University, Changsha 410000, Hunan Province, China
Dai Zhou, Zeng-Hui Huang, Huan Zhang, Li-Qing Fan, Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410000, Hunan Province, China
Jing-Yu Fan, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
Author contributions: Fan JY designed the study and supervised the laboratory experiments; Zhou D conducted the experiments and drafted the manuscript; Zhu F assisted in bioinformatics analysis; Huang ZH and Zhang H assisted with the experiments and sample collection; Fan LQ contributed new reagents and analytic tools; all authors read and approved the final manuscript.
Supported by the National Natural Science Foundation for Young Scholars of China , No. 82201771 ; National Natural Science Foundation of China , No. 32270912 ; Natural Science Foundation of Changsha , No. kq2202491 ; Research Grant of CITIC-Xiangya , No. YNXM202109 and No. YNXM202115 ; and Hunan Provincial Grant for Innovative Province Construction , No. 2019SK4012 .
Institutional review board statement: The study was reviewed and approved by the Reproductive & Genetic Hospital of CITIC-Xiangya, Basic Medical Science School, Central South University Institutional Review Board (Approval No. LL-SC-2021-025).
Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.
Conflict-of-interest statement: The authors have no conflicts of interest to declare.
Data sharing statement: All data are available from the corresponding author upon reasonable request jingyu@email.sc.edu.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Jing-Yu Fan, MD, PhD, Researcher, Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, GSRC 109, Columbia, SC 29208, United States. jingyu@email.sc.edu
Received: August 4, 2022
Peer-review started: August 4, 2022
First decision: September 29, 2022
Revised: October 7, 2022
Accepted: November 30, 2022
Article in press: November 30, 2022
Published online: December 26, 2022
Processing time: 138 Days and 20.1 Hours
Peer-review started: August 4, 2022
First decision: September 29, 2022
Revised: October 7, 2022
Accepted: November 30, 2022
Article in press: November 30, 2022
Published online: December 26, 2022
Processing time: 138 Days and 20.1 Hours
Core Tip
Core Tip: In this study, we reported the dominant expression of SPOC domain-containing protein 1 (SPOCD1) in human spermatogonial stem cells (SSCs). Knockdown of SPOCD1 in SSC caused a significant decrease in proliferation and self-renewal, and the induction of apoptosis. RNA sequencing showed that SPOCD1 knockdown caused significant downregulation of genes such as adenylate kinase 4 (AK4), and overexpression of AK4 in SPOCD1-knockdown cells reversed the phenotypic alterations induced by SPOCD knockdown. Additionally, we found significant downregulation of SPOCD1 in non-obstructive azoospermia patients. These results broaden our understanding of human SSC fate determination and provide new theories on the etiology of male infertility.