García-Sánchez D, Fernández D, Rodríguez-Rey JC, Pérez-Campo FM. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells 2019; 11(10): 748-763 [PMID: 31692976 DOI: 10.4252/wjsc.v11.i10.748]
Corresponding Author of This Article
Flor M Pérez-Campo, BSc, PhD, Assistant Professor, Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Avda. Cardenal Herrera Oria S/N, Cantabria 39011, Spain. f.perezcampo@unican.es
Research Domain of This Article
Cell Biology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Stem Cells. Oct 26, 2019; 11(10): 748-763 Published online Oct 26, 2019. doi: 10.4252/wjsc.v11.i10.748
Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells
Daniel García-Sánchez, Darío Fernández, José C Rodríguez-Rey, Flor M Pérez-Campo
Daniel García-Sánchez, José C Rodríguez-Rey, Flor M Pérez-Campo, Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
Darío Fernández, Laboratorio de Biología Celular y Molecular, Facultad de Odontología, Universidad Nacional del Nordeste, Corrientes W3400, Argentina
Darío Fernández, Consejo Nacional de Investigaciones científicas y Técnicas, Ciudad de Corrientes, Corrientes W3400, Argentina
Author contributions: All authors contributed to study conceptualization, original draft preparation, and manuscript editing.
Conflict-of-interest statement: None of the authors have any conflicts of interest relevant to this study.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Flor M Pérez-Campo, BSc, PhD, Assistant Professor, Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Avda. Cardenal Herrera Oria S/N, Cantabria 39011, Spain. f.perezcampo@unican.es
Telephone: +34-942-200958 Fax: +34-942-201945
Received: March 26, 2019 Peer-review started: March 28, 2019 First decision: June 17, 2019 Revised: July 15, 2019 Accepted: July 29, 2019 Article in press: July 29, 2019 Published online: October 26, 2019 Processing time: 210 Days and 19.9 Hours
Core Tip
Core tip: Mesenchymal stem cells (MSCs) are important tools for a wide range of therapeutic applications, including the treatment of critical size fractures or bone defects. However, whereas early clinical studies showed great expectations, long-term benefits of MSC-based treatments are not entirely successful. Transplanted cells had to face a series of important challenges that greatly reduce their survival and engraftment, and thus, their capacity to regenerate the target tissue. Although there is solid data indicating that the paracrine actions exerted by MSCs are equally important in the outcome of the treatment, this review is based on the current strategies aimed to enhance tissue regeneration directly occurring from the engraftment and differentiation of the transplanted MSCs.