Basic Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jan 26, 2020; 12(1): 70-86
Published online Jan 26, 2020. doi: 10.4252/wjsc.v12.i1.70
Generation of induced secretome from adipose-derived stem cells specialized for disease-specific treatment: An experimental mouse model
Ok-Hee Kim, Ha-Eun Hong, Haeyeon Seo, Bong Jun Kwak, Ho Joong Choi, Kee-Hwan Kim, Joseph Ahn, Sang Chul Lee, Say-June Kim
Ok-Hee Kim, Ha-Eun Hong, Haeyeon Seo, Kee-Hwan Kim, Sang Chul Lee, Say-June Kim, Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
Ok-Hee Kim, Ha-Eun Hong, Haeyeon Seo, Bong Jun Kwak, Ho Joong Choi, Joseph Ahn, Say-June Kim, Department of Surgery, Division of Hepato-biliary Pancreatic Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
Kee-Hwan Kim, Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, South Korea
Sang Chul Lee, Department of Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, South Korea
Author contributions: All authors contributed to manuscript preparation; Kim SJ designed the research and analyzed data; Kim OH wrote the paper, performed in vitro experiment, and analyzed data; Hong HE and Seo H performed in vitro experiments; Kwak BJ, Choi HJ, Kim KH, Ahn J, and Lee SC performed in vivo experiments and analyzed data.
Supported by National Research Foundation of Korea, No. NRF-2015R1C1A1A02036931
Institutional animal care and use committee statement: Approved by the Animal Care Committee of the Catholic University of Korea, No. CMCDJ-AP-2016-001.
Conflict-of-interest statement: The authors have declared no potential conflicts of interest.
Data sharing statement: Requests for access to data should be addressed to the corresponding author.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Say-June Kim, MD, PhD, Professor, Department of Surgery, Division of Hepato-biliary Pancreatic Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea. sayjunekim@gmail.com
Received: April 12, 2019
Peer-review started: April 14, 2019
First decision: May 16, 2019
Revised: August 16, 2019
Accepted: September 26, 2019
Article in press: September 26, 2019
Published online: January 26, 2020
Processing time: 261 Days and 19.9 Hours
ARTICLE HIGHLIGHTS
Research background

The exclusive use of mesenchymal stem cell (MSC)-secreted molecules, named as the secretome, rather than stem cells have been evaluated for overcoming the limitations of cell-based therapy while maintaining its advantages. As recent studies have shown that this secretome has therapeutic effects similar to stem cells, the secretome has become the basis of cell-free therapy.

Research motivation

The composition of the secretome is influenced by various external factors, including the cell source, type of culture media, culturing period, and preconditioning treatment. Previous studies suggest that MSCs can be induced to generate a specialized secretome customized to a specific disease. We herein defined induced secretome (isecretome) as the secretome released from MSCs that had been stimulated by disease-causing materials to treat the specific disease.

Research objectives

Thioacetamide (TAA) is a well-known hepatotoxin. We thus attempted to validate the higher therapeutic effects of the secretome induced by TAA (TAA-isecretome) compared to the naïve secretome, specifically in mice with TAA-induced hepatic failure. If the superiority of the isecretome over the naïve secretome is demonstrated, it could provide a foundation for producing a disease-specific isecretome applicable to specific diseases.

Research methods

We collected the secretory materials (named as inducers) released from AML12 hepatocytes that had been pretreated with TAA and generated the TAA-isecretome after stimulating ASCs with the inducers. The TAA-isecretome was intravenously administered to mice with TAA-induced hepatic failure and those with partial hepatectomy. In addition, we generated an HBx-isecretome using hepatitis X antigens as inducers and compared the components of the naïve secretome, TAA-isecretome, and HBx-isecretome using liquid chromatography–mass spectrometry.

Research results

Compared to the naïve secretome infusion, TAA-isecretome infusion showed higher therapeutic potential in terms of (1) restoring disorganized hepatic tissue to normal tissue; (2) Inhibiting proinflammatory cytokines (interleukin-6 and tumor necrosis factor-α); and (3) Reducing abnormally elevated liver enzymes (aspartate aminotransferase and alanine aminotransferase) in mice with TAA-induced hepatic failure. However, the TAA-isecretome showed inferior therapeutic potential for restoring hepatic function in partially hepatectomized mice. Proteomic analysis of the TAA-isecretome identified that antioxidant processes were the most predominant enriched biological networks of the proteins exclusively identified in the TAA-isecretome. In addition, peroxiredoxin-1, a potent antioxidant protein, was found to be one of the representative components of the TAA-isecretome.

Research conclusions

We showed that the TAA-isecretome was superior to the naïve secretome in restoring hepatic function while minimizing inflammatory processes in mice with TAA-induced hepatic failure. However, such superiority was not observed in the mouse model of partial hepatectomy, suggesting disease-specificity of the TAA-isecretome. Free radicals are principal pathogenic agents in the pathogenesis of TAA-induced hepatic injury. Proteomic analysis of TAA-isecretome identified that antioxidant processes were the most predominantly enriched biological networks of the proteins exclusively identified in the TAA-isecretome. In addition, Prdx-1, a potent antioxidant protein, was found to be one of the representative components of the TAA-isecretome.

Research perspectives

Our results suggest that appropriate stimulation of MSCs with pathogenic agents can lead to the production of a secretome specialized for protecting against the pathogen. This approach is expected to open a new way of developing various specific therapeutics based on the high plasticity and responsiveness of MSCs.