Published online Jul 26, 2014. doi: 10.4252/wjsc.v6.i3.305
Revised: April 7, 2014
Accepted: May 16, 2014
Published online: July 26, 2014
Processing time: 233 Days and 12.8 Hours
Sex determining region Y-box 2 (Sox2), a member of the SoxB1 transcription factor family, is an important transcriptional regulator in pluripotent stem cells (PSCs). Together with octamer-binding transcription factor 4 and Nanog, they co-operatively control gene expression in PSCs and maintain their pluripotency. Furthermore, Sox2 plays an essential role in somatic cell reprogramming, reversing the epigenetic configuration of differentiated cells back to a pluripotent embryonic state. In addition to its role in regulation of pluripotency, Sox2 is also a critical factor for directing the differentiation of PSCs to neural progenitors and for maintaining the properties of neural progenitor stem cells. Here, we review recent findings concerning the involvement of Sox2 in pluripotency, somatic cell reprogramming and neural differentiation as well as the molecular mechanisms underlying these roles.
Core tip: Sex determining region Y-box 2 (Sox2) plays important roles in pluripotent stem cells, not only for maintaining their pluripotency but also for directing their neural differentiation. There have been many intensive studies in the last decade, which serve to ascertain the function of Sox2 in these processes. In this review, we have summarized the recent progress made regarding the involvement of Sox2 in pluripotency, somatic cell reprogramming and neural differentiation as well as the molecular mechanisms underlying these roles.