Published online Apr 26, 2014. doi: 10.4252/wjsc.v6.i2.239
Revised: February 7, 2014
Accepted: February 18, 2014
Published online: April 26, 2014
Processing time: 144 Days and 20.2 Hours
Alzheimer’s disease (AD) is a progressive neurodegenerative disease in which patients exhibit gradual loss of memory that impairs their ability to learn or carry out daily tasks. Diagnosis of AD is difficult, particularly in early stages of the disease, and largely consists of cognitive assessments, with only one in four patients being correctly diagnosed. Development of novel therapeutics for the treatment of AD has proved to be a lengthy, costly and relatively unproductive process with attrition rates of > 90%. As a result, there are no cures for AD and few treatment options available for patients. Therefore, there is a pressing need for drug discovery platforms that can accurately and reproducibly mimic the AD phenotype and be amenable to high content screening applications. Here, we discuss the use of induced pluripotent stem cells (iPSCs), which can be derived from adult cells, as a method of recapitulation of AD phenotype in vitro. We assess their potential use in high content screening assays and the barriers that exist to realising their full potential in predictive efficacy, toxicology and disease modelling. At present, a number of limitations need to be addressed before the use of iPSC technology can be fully realised in AD therapeutic applications. However, whilst the use of AD-derived iPSCs in drug discovery remains a fledgling field, it is one with immense potential that is likely to reach fruition within the next few years.
Core tip: Alzheimer’s disease (AD) affects 36 million people worldwide and is set to double by 2030. Progress in understanding AD has been hindered by a lack of suitable in vitro and in vivo models reflected in > 90% drug attrition rates. Induced pluripotent stem cells are an alternative source of neural cells that can be derived from patients’ somatic cells and exhibit AD pathophysiological phenotypes. These cells are amenable to HTS formats required for drug discovery applications. Harnessing this combined potential would provide an unprecedented opportunity to significantly reduce timeframes and costs associated with developing novel therapeutics, ultimately improving patient outcomes.