Published online Jul 26, 2023. doi: 10.4252/wjsc.v15.i7.701
Peer-review started: December 29, 2022
First decision: April 27, 2023
Revised: May 18, 2023
Accepted: June 25, 2023
Article in press: June 25, 2023
Published online: July 26, 2023
Processing time: 208 Days and 3.2 Hours
Mesenchymal stromal cells (MSCs) are multipotent cell populations obtained from fetal and adult tissues. They share some characteristics with limb bud meso
To evaluate the potential of MSCs to differentiate into skeletal lineages and gene
We used the experimental system of RLs from dissociated-reaggregated human placenta (PL) and umbilical cord blood (UCB) MSCs. After being harvested and reaggregated in a pellet, cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud. Next, this filled ectoderm was grafted into the back of a donor chick embryo. Under these conditions, the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements. Their response to differentiation and morphogenetic signals was evaluated by quantitative poly
We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic, osteogenic, and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo. MSCs-RL from PL or UCB were committed early to chondrogenic lineage. Nevertheless, the UCB-RL osteogenic commitment was favored, although preferentially to a tenogenic cell fate. These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo. Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs. Thus, it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.
PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages, but they are not sufficient to generate complex skeletal structures in vivo.
Core Tip: Human mesenchymal stromal cells (MSCs) from umbilical cord blood or placenta can differentiate into osteogenic and chondrogenic lineages in culture systems and have been used in regenerative medicine. Here, we used the recombinant limb (RL) model to provide evidence that MSCs do not have the ability to generate skeletal structures in vivo. MSCs received and responded to the ectoderm’s embryonic spatiotemporal signals in this RL system. However, the expression of differentiation markers of skeletal lineages was not sufficient to generate skeletal structures in vivo.