Basic Study
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Dec 26, 2023; 15(12): 1077-1092
Published online Dec 26, 2023. doi: 10.4252/wjsc.v15.i12.1077
ADSC-Exos outperform BMSC-Exos in alleviating hydrostatic pressure-induced injury to retinal ganglion cells by upregulating nerve growth factors
Zhi-Kun Zheng, Lei Kong, Min Dai, Yi-Dan Chen, Yan-Hua Chen
Zhi-Kun Zheng, Lei Kong, Min Dai, Yi-Dan Chen, Yan-Hua Chen, Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
Co-first authors: Zhi-Kun Zheng and Lei Kong.
Author contributions: Zheng ZK and Kong L designed the study; Zheng ZK, Kong L, and Dai M acquired and analyzed data; Dai M performed the experiments; Chen YD interpreted the data; Zheng ZK, Kong L, and Chen YH wrote the manuscript; and all authors approved the final version of the article.
Supported by Yunnan Provincial High-level Talent Cultivation Support Program for Young Top-notch Talents, No. YNWR-QNBJ-2020-237; Yunnan Natural Science Foundation, No. 202301AT070190; and Kunming Medical University Joint Special Fund, No. 202301AY070001-222.
Institutional animal care and use committee statement: The study was reviewed and approved by the Laboratory Animal Welfare Ethics Committee Yunnan University (Approval No. YNU20230463).
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Min Dai, PhD, Doctor, Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, No. 176 Qingnian Road, Wuhua District, Kunming 650021, Yunnan Province, China. dm9024@163.com
Received: September 6, 2023
Peer-review started: September 6, 2023
First decision: October 23, 2023
Revised: November 17, 2023
Accepted: December 4, 2023
Article in press: December 4, 2023
Published online: December 26, 2023
Processing time: 111 Days and 0.1 Hours
Abstract
BACKGROUND

Mesenchymal stem cells (MSCs) have protective effects on the cornea, lacrimal gland, retina, and photoreceptor cell damage, which may be mediated by exosomes (exos) released by MSCs.

AIM

To investigate the ameliorating effect of exos derived from different MSCs on retinal ganglion cell (RGC) injury induced by hydrostatic pressure.

METHODS

The RGC injury model was constructed by RGC damage under different hydrostatic pressures (40, 80, 120 mmHg). Then RGCs were cultured with adipose-derived stem cell (ADSC)-Exos and bone marrow-derived stem cell (BMSC)-Exos. Cell Counting Kit-8, transmission electron microscopy, flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction, and western blotting were performed to detect the ameliorating effect of exos on pressure-induced RGC injury.

RESULTS

ADSC-Exos and BMSC-Exos were successfully isolated and obtained. The gibbosity of RGCs was lower, the cells were irregularly ellipsoidal under pressure, and the addition of ADSC-Exos and BMSC-Exos significantly restored RGC morphology. Furthermore, the proliferative activity of RGCs was increased and the apoptosis of RGCs was inhibited. Moreover, the levels of lactate dehydrogenase and apoptosis-related proteins were increased, and the concentrations of antiapoptotic proteins and neurotrophic factors were decreased in damaged RGCs. However, the above indicators were significantly improved after ADSC-Exos and BMSC-Exos treatment.

CONCLUSION

These findings indicated that ADSC-Exos and BMSC-Exos could ameliorate RGC injury caused by hydrostatic pressure by inhibiting apoptosis and increasing the secretion of neurotrophic factors.

Keywords: Adipose-derived stem cells; Bone marrow-derived stem cells; Exosomes; Glaucoma

Core Tip: We discovered for the first time that adipose-derived stem cell-exosomes (ADSC-Exos) significantly ameliorate retinal ganglion cell (RGC) injury caused by hydrostatic pressure by inhibiting apoptosis and increasing the secretion of neurotrophic factors. ADSC-Exos manifested better ameliorating effects than bone marrow-derived stem cell (BMSC)-Exos in ameliorating the RGC injury induced by hydrostatic pressure. BMSC-Exos ameliorate optic nerve injury caused by hydrostatic pressure by inhibiting apoptosis and increasing the secretion of neurotrophic factors.