Minireviews
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jul 26, 2022; 14(7): 503-512
Published online Jul 26, 2022. doi: 10.4252/wjsc.v14.i7.503
Stem cell therapy for insulin-dependent diabetes: Are we still on the road?
Lu Yang, Zhu-Meng Hu, Fang-Xu Jiang, Wei Wang
Lu Yang, Zhu-Meng Hu, Fang-Xu Jiang, Wei Wang, Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
Fang-Xu Jiang, School of Biomedical Science, University of Western Australia, Nedlands 6009, Australia
Fang-Xu Jiang, School of Health and Medical Sciences, Edith Cowan University, Perth 6000, Australia
Author contributions: Yang L wrote the manuscript; Hu ZM searched references; Jiang FX revised the manuscript; Wang W proposed ideas and finally approved the submission.
Supported by National Natural Science Foundation of China, No. 81471081; the Natural Science Foundation of Fujian Province, China, No. 2019J01010; Xiamen Research Foundation for Science and Technology Project No. 3502Z20194037; and Scientific Research Foundation for Advanced Talents, Xiang’an Hospital of Xiamen University, No. PM201809170005.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Wei Wang, MD, Doctor, Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, No. 2000 Xiang'an East Road, Xiang'an District, Xiamen 361100, Fujian Province, China. wwei19742007@hotmail.com
Received: March 17, 2022
Peer-review started: March 17, 2022
First decision: April 19, 2022
Revised: April 26, 2022
Accepted: June 26, 2022
Article in press: June 26, 2022
Published online: July 26, 2022
Processing time: 131 Days and 2.6 Hours
Abstract

In insulin-dependent diabetes, the islet β cells do not produce enough insulin and the patients must receive exogenous insulin to control blood sugar. However, there are still many deficiencies in exogenous insulin supplementation. Therefore, the replacement of destroyed functional β cells with insulin-secreting cells derived from functional stem cells is a good idea as a new therapeutic idea. This review introduces the development schedule of mouse and human embryonic islets. The differences between mouse and human pancreas embryo development were also listed. Accordingly to the different sources of stem cells, the important research achievements on the differentiation of insulin-secreting β cells of stem cells and the current research status of stem cell therapy for diabetes were reviewed. Stem cell replacement therapy is a promising treatment for diabetes, caused by defective insulin secretion, but there are still many problems to be solved, such as the biosafety and reliability of treatment, the emergence of tumors during treatment, untargeted differentiation and autoimmunity, etc. Therefore, further understanding of stem cell therapy for insulin is needed.

Keywords: Diabetes mellitus; Stem cell therapy; Transplantation; β cell; Differentiation

Core Tip: Diabetes mellitus is one of the major health problems. Although traditional treatments such as exogenous insulin injection can relieve diabetes to a certain extent, they have failed to achieve a radical cure. Stem cell replacement therapy is a promising treatment for diabetes. So in this review, we introduce the development schedule of mouse and human embryonic islets and summarize the important research progressions in stem cell therapy for diabetes.