Published online Jul 26, 2022. doi: 10.4252/wjsc.v14.i7.435
Peer-review started: March 14, 2022
First decision: May 11, 2022
Revised: May 25, 2022
Accepted: June 20, 2022
Article in press: June 20, 2022
Published online: July 26, 2022
Processing time: 133 Days and 19.3 Hours
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Core Tip: In this review, we aim to outline the present understanding of the potential application of dental pulp stem cells (DPSCs) and their derivatives in the field of regenerative medicine. DPSCs have different properties and regenerative potentials according to the age and health condition of the donor. For therapeutic applications, DPSCs can be administered through different methodologies, including by single injections and the transplantation of the cells and their derivatives with a support, as cell sheets or as cell spheroids. The underlying mechanisms of the regenerative potential of DPSCs and their derivatives may occur through direct regulation and immunomodulatory and paracrine effects.