Published online Jun 26, 2021. doi: 10.4252/wjsc.v13.i6.632
Peer-review started: February 27, 2021
First decision: May 5, 2021
Revised: May 7, 2021
Accepted: June 4, 2021
Article in press: June 4, 2021
Published online: June 26, 2021
Processing time: 118 Days and 19.1 Hours
Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies aimed at providing effective alternatives for those human pathologies in which surgical or pharmacological therapies produce limited effects. Among stem cells of different sources, mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. Other than a multipotent differentiation ability, MSCs can release extracellular vesicles conveying proteins, mRNA and microRNA. Thanks to these properties, new therapeutic approaches have been designed for the treatment of various pathologies, including ocular diseases. In this review, the use of different MSCs and different administration strategies are described for the treatment of diabetic retinopathy, glaucoma, and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and by MSC administration in animal models. Most authors agree that beneficial effects are likely related to MSC paracrine activity. Based on these considerations, many clinical trials have already been carried out. Overall, although some adverse effects have been described, promising outcomes are reported. It can be assumed that in the near future, safer and more effective protocols will be developed for more numerous clinical applications to improve the quality of life of patients affected by eye diseases.
Core Tip: Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies. Mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. MSC-based therapeutic approaches have been designed for the treatment of various ocular diseases, such as diabetic retinopathy, glaucoma and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and in animal models. Many clinical trials have already been carried out and, although some adverse effects have been described, promising outcomes are reported.