Published online Dec 26, 2021. doi: 10.4252/wjsc.v13.i12.1826
Peer-review started: March 16, 2021
First decision: May 5, 2021
Revised: June 29, 2021
Accepted: November 30, 2021
Article in press: November 30, 2021
Published online: December 26, 2021
Processing time: 283 Days and 17.7 Hours
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Core Tip: Mesenchymal stem cells (MSCs) exhibit great potential in regenerative medicine. However, the clinical application of primary MSCs has been greatly hampered by the limitations of primary MSCs. MSCs derived from human pluripotent stem cells (hPSC-MSCs) are an attractive source of cells to overcome such problems with primary MSCs. This review summarizes the various derivation approaches and applications of hPSC-MSCs in regenerative medicine. Lastly, the challenges with the use of hPSC-MSCs are also discussed, which indicate that more efforts are needed for the clinical application of hPSC-MSCs.