Published online Oct 26, 2021. doi: 10.4252/wjsc.v13.i10.1417
Peer-review started: March 26, 2021
First decision: July 4, 2021
Revised: July 15, 2021
Accepted: September 16, 2021
Article in press: September 16, 2021
Published online: October 26, 2021
Processing time: 213 Days and 10.1 Hours
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Core Tip: Despite the remarkable progress that has been made in understanding the cellular and molecular biology of gliomas, current therapeutic strategies have not yet provided a significant benefit to patients or a cure. This review highlights the key functions of SOX transcriptional factors (TFs) in glioblastoma (GBM) and glioma stem cells (GSCs). SOX TFs influence stemness, self-renewal, proliferation, differentiation, viability, migration, invasion, apoptosis, therapy resistance, sphere-forming capacity and tumorigenicity. We emphasized that fine-tuning of the SOX expression level is required to control the balance between the stemness and differentiation of GSCs, making SOX TFs promising therapeutic targets for combatting GBM.