Published online Jan 26, 2021. doi: 10.4252/wjsc.v13.i1.128
Peer-review started: September 1, 2020
First decision: September 15, 2020
Revised: November 1, 2020
Accepted: November 17, 2020
Article in press: November 17, 2020
Published online: January 26, 2021
Processing time: 142 Days and 0.1 Hours
Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo.
To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss.
We collected BMSCs from mice at early to middle ages and compared their self-renewal and differentiation potential. Subsequently, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo.
The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo. The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features.
Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
Core Tip: Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. In this study, we examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo. The BMSCs isolated at different ages revealed a consistent decreasing trend in both colony-forming and osteogenic commitment capacity. Moreover, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo to investigate the distinct molecular and regulatory features that underpin the early loss of osteogenic potential. We showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The adipogenic and DNA repair features were enriched in the later age at 7 mo. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features.