Published online Sep 26, 2020. doi: 10.4252/wjsc.v12.i9.938
Peer-review started: March 3, 2020
First decision: June 7, 2020
Revised: June 18, 2020
Accepted: July 18, 2020
Article in press: July 18, 2020
Published online: September 26, 2020
Processing time: 202 Days and 13.3 Hours
In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
Core tip: In the last few decades, cell-based regenerative therapy has received considerable attention for the treatment of degenerative diseases or the regeneration of injured organs. However, poor cell retention is considered a major drawback associated with the short-term regenerative benefits. Furthermore, the short-term regenerative benefits are linked to paracrine factors secreted by the transplanted stem cells. To improve regenerative outcomes, researchers have identified the role of stromal cell-derived factor-1 (SDF1) as a key chemotactic factor that can facilitate site-specific migration and retention of transplanted cells, and stem or progenitor cells within the body by activating the SDF1-CXCR4 or HMGB1-SFD1-CXCR4 pathways.