Basic Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jul 26, 2020; 12(7): 621-632
Published online Jul 26, 2020. doi: 10.4252/wjsc.v12.i7.621
Involvement of glycated albumin in adipose-derived-stem cell-mediated interleukin 17 secreting T helper cell activation
Julien Pestel, Maud Robert, Sara Corbin, Hubert Vidal, Assia Eljaafari
Julien Pestel, Maud Robert, Hubert Vidal, Assia Eljaafari, INSERM U1060 CarMen, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
Julien Pestel, Maud Robert, Hubert Vidal, Assia Eljaafari, Faculty of Medicine, Université Claude Bernard Lyon 1, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
Maud Robert, Department of Surgery in Gastro-enterology, Edouard Herriot Hospital, Lyon 69003, France
Sara Corbin, Public Health Department, Hospices Civils de Lyon, 1 quai des célestins Lyon 69002, France
Assia Eljaafari, DO-IT Research Team, Hospices Civils de Lyon, 1 quai des célestins, Lyon 69002, France
Author contributions: Pestel J performed the experiments, acquired and analyzed data and was involved in data interpretation and in the writing of the manuscript; Robert M provided the residual adipose tissues and participated in the writing of the manuscript; Corbin S supervised the statistical data and helped in the revision of the manuscript; Vidal H participated in the design of the study, data interpretation, and writing of the manuscript; Eljaafari A designed, coordinated the study, was involved in data interpretation and in the writing of the manuscript. All authors approved the final version of the article.
Institutional review board statement: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Committee for people Protection emanating from the Research Ministry, has given us its approval for the use of human adipose tissues isolated from residues of visceral surgery. Informed consents were signed by each donor.
Conflict-of-interest statement: No potential conflicts of interest were disclosed.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Assia Eljaafari, MD, PhD, Doctor, Senior Scientist, CarMeN Laboratory, INSERM U1060, University Claude Bernard Lyon 1 and Hospices Civils de Lyon, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69310, France. assia.eljaafari@univ-lyon1.fr
Received: February 28, 2020
Peer-review started: February 28, 2020
First decision: April 18, 2020
Revised: May 19, 2020
Accepted: June 10, 2020
Article in press: June 10, 2020
Published online: July 26, 2020
Abstract
BACKGROUND

Advanced glycation end products (AGE) are a marker of various diseases including diabetes, in which they participate to vascular damages such as retinopathy, nephropathy and coronaropathy. Besides those vascular complications, AGE are involved in altered metabolism in many tissues, including adipose tissue (AT) where they contribute to reduced glucose uptake and attenuation of insulin sensitivity. AGE are known to contribute to type 1 diabetes (T1D) through promotion of interleukin (IL)-17 secreting T helper (Th17) cells.

AIM

To investigate whether lean adipose-derived stem cells (ASC) could be able to induce IL-17A secretion, with the help of AGE.

METHODS

As we have recently demonstrated that ASC are involved in Th17 cell promotion when they are harvested from obese AT, we used the same co-culture model to measure the impact of glycated human serum albumin (G-HSA) on human lean ASC interacting with blood mononuclear cells. IL-17A and pro-inflammatory cytokine secretion were measured by ELISA. Receptor of AGE (RAGE) together with intercellular adhesion molecule 1 (ICAM-1), human leukocyte Antigen (HLA)-DR, cluster of differentiation (CD) 41, and CD62P surface expressions were measured by cytofluorometry. Anti-RAGE specific monoclonal antibody was added to co-cultures in order to evaluate the role of RAGE in IL-17A production.

RESULTS

Results showed that whereas 1% G-HSA only weakly potentiated the production of IL-17A by T cells interacting with ASC harvested from obese subjects, it markedly increased IL-17A, but also interferon gamma and tumor necrosis factor alpha production in the presence of ASC harvested from lean individuals. This was associated with increased expression of RAGE and HLA-DR molecule by co-cultured cells. Moreover, RAGE blockade experiments demonstrated RAGE specific involvement in lean ASC-mediated Th-17 cell activation. Finally, platelet aggregation and ICAM-1, which are known to be induced by AGE, were not involved in these processes.

CONCLUSION

Thus, our results demonstrated that G-HSA potentiated lean ASC-mediated IL-17A production in AT, suggesting a new mechanism by which AGE could contribute to T1D pathophysiology.

Keywords: Interleukin 17 secreting T helper cells, Lean adipose tissue, Type 1 diabetes, Advanced glycation end products, Adipose-derived stem cells

Core tip: Using a coculture model with human lean adipose-derived stem cells (ASC) and mononuclear cells, we have shown in this study that glycated human serum albumin (G-HSA) enhances lean ASC-mediated interleukin (IL)-17A, interferon gamma and tumor necrosis factor alpha secretion. This effect involved the advanced glycated end products (AGE)/Receptor of advanced glycated end products (RAGE) axis as assessed by anti-RAGE blocking antibodies and was associated with increased expression of RAGE and human leukocyte antigen-DR molecules. Thus, our results demonstrated that G-HSA potentiated lean ASC-mediated IL-17A production in adipose tissues, suggesting a new mechanism by which AGE could contribute to type 1 diabetes pathophysiology.