Published online Oct 26, 2019. doi: 10.4252/wjsc.v11.i10.831
Peer-review started: February 20, 2019
First decision: April 15, 2019
Revised: June 5, 2019
Accepted: August 26, 2019
Article in press: August 26, 2019
Published online: October 26, 2019
Processing time: 246 Days and 0 Hours
Numerous studies investigated cell-based therapies for myocardial infarction (MI). The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI. Experimental studies on animal models demonstrated the potential of fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) for treating acute MI. In contrast, studies on the treatment of chronic MI (CMI; > 4 wk post-MI) with UA-ADRCs have not been published so far. Among several methods for delivering cells to the myocardium, retrograde delivery into a temporarily blocked coronary vein has recently been demonstrated as an effective option.
To test the hypothesis that in experimentally-induced chronic myocardial infarction (CMI; > 4 wk post-MI) in pigs, retrograde delivery of fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) into a temporarily blocked coronary vein improves cardiac function and structure.
The left anterior descending (LAD) coronary artery of pigs was blocked for 180 min at time point T0. Then, either 18 × 106 UA-ADRCs prepared at “point of care” or saline as control were retrogradely delivered via an over-the-wire balloon catheter placed in the temporarily blocked LAD vein 4 wk after T0 (T1). Effects of cells or saline were assessed by cardiac magnetic resonance (CMR) imaging, late gadolinium enhancement CMR imaging, and post mortem histologic analysis 10 wk after T0 (T2).
Unlike the delivery of saline, delivery of UA-ADRCs demonstrated statistically significant improvements in cardiac function and structure at T2 compared to T1 (all values given as mean ± SE): Increased mean LVEF (UA-ADRCs group: 34.3% ± 2.9% at T1 vs 40.4 ± 2.6% at T2, P = 0.037; saline group: 37.8% ± 2.6% at T1 vs 36.2% ± 2.4% at T2, P > 0.999), increased mean cardiac output (UA-ADRCs group: 2.7 ± 0.2 L/min at T1 vs 3.8 ± 0.2 L/min at T2, P = 0.002; saline group: 3.4 ± 0.3 L/min at T1 vs 3.6 ± 0.3 L/min at T2, P = 0.798), increased mean mass of the left ventricle (UA-ADRCs group: 55.3 ± 5.0 g at T1 vs 71.3 ± 4.5 g at T2, P < 0.001; saline group: 63.2 ± 3.4 g at T1 vs 68.4 ± 4.0 g at T2, P = 0.321) and reduced mean relative amount of scar volume of the left ventricular wall (UA-ADRCs group: 20.9% ± 2.3% at T1 vs 16.6% ± 1.2% at T2, P = 0.042; saline group: 17.6% ± 1.4% at T1 vs 22.7% ± 1.8% at T2, P = 0.022).
Retrograde cell delivery of UA-ADRCs in a porcine model for the study of CMI significantly improved myocardial function, increased myocardial mass and reduced the formation of scar tissue.
Core tip: We report results derived from a feasibility study on pigs whose left anterior descending artery was occluded for 180 min. Four weeks later, 18 × 106 fresh, uncultured, unmodified, autologous adipose-derived regenerative cells were retrogradely delivered into the balloon-blocked left anterior descending vein (control: delivery of saline). Another 6 wk later, the mean left ventricular mass (+29%; P < 0.001) and cardiac output (+37%; P = 0.002) had significantly increased after cell delivery. The unique combination of the procedure used for isolating stem cells and the novel cell delivery route applied in the present study potentially opens new horizons for clinical therapy for chronic myocardial infarction.