Editorial
Copyright ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Oct 26, 2019; 11(10): 722-728
Published online Oct 26, 2019. doi: 10.4252/wjsc.v11.i10.722
Applications of single cell RNA sequencing to research of stem cells
Xiao Zhang, Lei Liu
Xiao Zhang, Lei Liu, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
Author contributions: Zhang X contributed to the literature review, drafting and writing this paper as the first author. Liu L contributed to the revision and editing of the manuscript, and gave approval to the final version as the corresponding author.
Supported by the National Natural Science Foundation of China, No. 81670951.
Conflict-of-interest statement: There are no potential conflicts of interest to report.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Lei Liu, MD, PhD, Professor, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu 610041, Sichuan Province, China. drliulei@163.com
Telephone: +86-28-85503406 Fax: +86-28-85582167
Received: May 5, 2019
Peer-review started: May 8, 2019
First decision: August 1, 2019
Revised: August 12, 2019
Accepted: September 11, 2019
Article in press: September 11, 2019
Published online: October 26, 2019
Processing time: 170 Days and 16.3 Hours
Abstract

Stem cells (SCs) with their self-renewal and pluripotent differentiation potential, show great promise for therapeutic applications to some refractory diseases such as stroke, Parkinsonism, myocardial infarction, and diabetes. Furthermore, as seed cells in tissue engineering, SCs have been applied widely to tissue and organ regeneration. However, previous studies have shown that SCs are heterogeneous and consist of many cell subpopulations. Owing to this heterogeneity of cell states, gene expression is highly diverse between cells even within a single tissue, making precise identification and analysis of biological properties difficult, which hinders their further research and applications. Therefore, a defined understanding of the heterogeneity is a key to research of SCs. Traditional ensemble-based sequencing approaches, such as microarrays, reflect an average of expression levels across a large population, which overlook unique biological behaviors of individual cells, conceal cell-to-cell variations, and cannot understand the heterogeneity of SCs radically. The development of high throughput single cell RNA sequencing (scRNA-seq) has provided a new research tool in biology, ranging from identification of novel cell types and exploration of cell markers to the analysis of gene expression and predicating developmental trajectories. scRNA-seq has profoundly changed our understanding of a series of biological phenomena. Currently, it has been used in research of SCs in many fields, particularly for the research of heterogeneity and cell subpopulations in early embryonic development. In this review, we focus on the scRNA-seq technique and its applications to research of SCs.

Keywords: Stem cells; Heterogeneity; Single cell RNA sequencing; Developmental trajectories; Cell subpopulations

Core tip: Single cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to explore cellular heterogeneity, provide new insights based on gene expression profiles of individual cells, reveal new cell subpopulations and predict developmental trajectories. It has been used in research of stem cells (SCs) in many fields, especially the study of heterogeneity and cell subpopulations in early embryonic development. This review aims to provide an overview of the applications of scRNA-seq to research of SCs.