Copyright
©The Author(s) 2020.
World J Gastroenterol. Sep 28, 2020; 26(36): 5408-5419
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Table 1 Applications of artificial intelligence in endoscopy based on different study population
Ref. | Year | Country/region | Number of cases | Study population | Methods | Results |
Liu et al[7] | 2016 | China | 400 images | Hospital | JDPCA | AUCs (0.9532), accuracy (90.75%) |
Ali et al[8] | 2018 | Pakistan | 176 images | Public images dataset | G2LCM | AUC (0.91), accuracy (87%) |
Luo et al[9] | 2019 | China | 1036496 images | Hospital | GRAIDS | Accuracy (up to 97.7%) |
Sakai et al[10] | 2018 | Japan | 29037 images | Hospital | CNN | Accuracy (87.6%) |
Yoon et al[11] | 2019 | South Korea | 11539 images | Hospital | VGG model | AUCs (0.981 for detection), AUCs (0.851 for depth prediction) |
Nakahira et al[12] | 2019 | Japan | 107284 images | Cancer Institute | Deep neural network | Kappa value (0.27) |
Zhu et al[13] | 2019 | China | 993 images | Hospital | CNN-CAD system | AUCs (0.94), accuracy (89.16%) |
Wang et al[14] | 2019 | China | 104864 images | Hospital | MCNN | Sensitivity (79.622%), specificity (78.48%) |
Guimarães et al[15] | 2020 | Germany | 270 images | Medical center | DL | AUCs (0.98), accuracy (93%) |
Miyaki et al[16] | 2015 | Japan | 100 cases | Hospital | SVM | Average output value (0.846 ± 0.220) |
Liu et al[17] | 2018 | China | 1120 M-NBI images/3068 images | Hospital | Deep CNN | Top accuracy (98.5%) |
Horiuchi et al[18] | 2019 | Japan | 2828 images | Hospital | CNN | Accuracy (85.3%) |
Li et al[19] | 2019 | China | 2088 images | Hospital | CNN | Accuracy (90.91%) |
Bergholt et al[20] | 2011 | Singapore | 1063 in vivo Raman spectra | Hospital | ACO-LDA algorithms | Sensitivity (94.6%), specificity (94.6%) |
Duraipandian et al[21] | 2012 | Singapore | 2748 in vivo Raman spectra | Hospital | PLS-DA algorithms | Accuracy (85.6%), specificity (86.2%) |
Table 2 Applications of artificial intelligence in pathology and computerized tomography based on different study population
Ref. | Year | Country/region | Number of cases | Study population | Methods | Results |
Li et al[22] | 2018 | China | 700 slices | Publicly gastric slice dataset | GastricNet | Accuracy (100%) |
Sharma et al[23] | 2017 | Germany | 454 cases | Hospital | CNN | Accuracy (0.6990 for cancer classification), accuracy (0.8144 for necrosis detection) |
Leon et al[24] | 2019 | Colombia | 40 images | Department of pathology | Deep CNN | Accuracy (up to 89.72%) |
Iizuka et al[25] | 2020 | Japan | 1746 biopsy histopathology WSIs | Hospital, TCGA | CNN, RNN | AUCs (up to 0.98), accuracy (95.6%) |
Yoshida et al[26] | 2018 | Japan | 3062 gastric biopsy specimens | Cancer center | ML | Overall concordance rate (55.6%) |
Garcia et al[27] | 2017 | Peru | 3257 images | - | Deep CNN | Accuracy (96.88%) |
Liang et al[28] | 2019 | China | 1900 images | - | DL | IoU (0.883), accuracy (91.09%) |
Qu et al[29] | 2018 | Japan | 9720 images/19440 images | Hospital | DL | AUCs (up to 0.965) |
Sun et al[30] | 2019 | China | 500 pathological images | Hospital | DL | IoU (0.8265), accuracy (91.60%) |
Cao et al[31] | 2019 | China | 1399 pathological sections | - | the Mask R-CNN | AP value (61.2) |
Table 3 Applications of artificial intelligence in computerized tomography based on different study population
Ref. | Year | Country/region | Number of cases | Study population | Methods | Results |
Huang et al[32] | 2020 | China | - | Hospital | Deep CNN | - |
Gao et al[33] | 2019 | China | 32495 images | Hospital | FR-CNN | AUCs (0.9541) |
Li et al[34] | 2015 | China | 26 cases | Hospital | KNN algorithm | Accuracy (76.92%) |
Li et al[35] | 2012 | China | 38 lymph node datasets | Hospital | ML | Accuracy (96.33%) |
Table 4 Applications of artificial intelligence in gastric cancer prognosis based on different study population
Ref. | Year | Country/region | Number of cases | Study population | Methods | Results |
Jiang et al[36] | 2018 | China | 786 cases | Hospital | SVM classifier | AUCs (up to 0.834) |
Lu et al[37] | 2017 | China | 939 patients | Hospital | MMHG | Accuracy (69.28%) |
Korhani Kangi et al[38] | 2018 | Iran | 339 patients | Hospital | ANN, BNN | Sensitivity (88.2% for ANN, 90.3% for BNN), specificity (95.4% for ANN, 90.9% for BNN) |
Zhang et al[39] | 2019 | China | 669 cases | Hospital | ML | AUCs (up to 0.831) |
Liu et al[40] | 2018 | China | 432 GC tissue samples | Hospital | SVM classifier | Accuracy (up to 94.19%) |
Bollschweiler et al[41] | 2004 | Germany, Japan | 135 cases | Cancer center | ANN | Accuracy (93%) |
Hensler et al[42] | 2005 | Germany, Japan | 4302 cases | Cancer center | QUEEN technique | Accuracy (72.73%) |
Jagric et al[43] | 2010 | Slovenia | 213 cases | Clinical center | Learning vector quantization neural networks | Sensitivity (71%), specificity (96.1%) |
- Citation: Niu PH, Zhao LL, Wu HL, Zhao DB, Chen YT. Artificial intelligence in gastric cancer: Application and future perspectives. World J Gastroenterol 2020; 26(36): 5408-5419
- URL: https://www.wjgnet.com/1007-9327/full/v26/i36/5408.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i36.5408