Minireviews
Copyright ©The Author(s) 2020.
World J Gastroenterol. Sep 28, 2020; 26(36): 5408-5419
Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Table 1 Applications of artificial intelligence in endoscopy based on different study population
Ref.YearCountry/regionNumber of casesStudy populationMethodsResults
Liu et al[7]2016China400 imagesHospitalJDPCAAUCs (0.9532), accuracy (90.75%)
Ali et al[8]2018Pakistan176 imagesPublic images datasetG2LCMAUC (0.91), accuracy (87%)
Luo et al[9]2019China1036496 imagesHospitalGRAIDSAccuracy (up to 97.7%)
Sakai et al[10]2018Japan29037 imagesHospitalCNNAccuracy (87.6%)
Yoon et al[11]2019South Korea11539 imagesHospitalVGG modelAUCs (0.981 for detection), AUCs (0.851 for depth prediction)
Nakahira et al[12]2019Japan107284 imagesCancer InstituteDeep neural networkKappa value (0.27)
Zhu et al[13]2019China993 imagesHospitalCNN-CAD systemAUCs (0.94), accuracy (89.16%)
Wang et al[14]2019China104864 imagesHospitalMCNNSensitivity (79.622%), specificity (78.48%)
Guimarães et al[15]2020Germany270 imagesMedical centerDLAUCs (0.98), accuracy (93%)
Miyaki et al[16]2015Japan100 casesHospitalSVMAverage output value (0.846 ± 0.220)
Liu et al[17]2018China1120 M-NBI images/3068 imagesHospitalDeep CNNTop accuracy (98.5%)
Horiuchi et al[18]2019Japan2828 imagesHospitalCNNAccuracy (85.3%)
Li et al[19]2019China2088 imagesHospitalCNNAccuracy (90.91%)
Bergholt et al[20]2011Singapore1063 in vivo Raman spectraHospitalACO-LDA algorithmsSensitivity (94.6%), specificity (94.6%)
Duraipandian et al[21]2012Singapore2748 in vivo Raman spectraHospitalPLS-DA algorithmsAccuracy (85.6%), specificity (86.2%)
Table 2 Applications of artificial intelligence in pathology and computerized tomography based on different study population
Ref.YearCountry/regionNumber of casesStudy populationMethodsResults
Li et al[22]2018China700 slicesPublicly gastric slice datasetGastricNetAccuracy (100%)
Sharma et al[23]2017Germany454 casesHospitalCNNAccuracy (0.6990 for cancer classification), accuracy (0.8144 for necrosis detection)
Leon et al[24]2019Colombia40 imagesDepartment of pathologyDeep CNNAccuracy (up to 89.72%)
Iizuka et al[25]2020Japan1746 biopsy histopathology WSIsHospital, TCGACNN, RNNAUCs (up to 0.98), accuracy (95.6%)
Yoshida et al[26]2018Japan3062 gastric biopsy specimensCancer centerMLOverall concordance rate (55.6%)
Garcia et al[27]2017Peru3257 images-Deep CNNAccuracy (96.88%)
Liang et al[28]2019China1900 images-DLIoU (0.883), accuracy (91.09%)
Qu et al[29]2018Japan9720 images/19440 imagesHospitalDLAUCs (up to 0.965)
Sun et al[30]2019China500 pathological imagesHospitalDLIoU (0.8265), accuracy (91.60%)
Cao et al[31]2019China1399 pathological sections-the Mask R-CNNAP value (61.2)
Table 3 Applications of artificial intelligence in computerized tomography based on different study population
Ref.YearCountry/regionNumber of casesStudy populationMethodsResults
Huang et al[32]2020China-HospitalDeep CNN-
Gao et al[33]2019China32495 imagesHospitalFR-CNNAUCs (0.9541)
Li et al[34]2015China26 casesHospitalKNN algorithmAccuracy (76.92%)
Li et al[35]2012China38 lymph node datasetsHospitalMLAccuracy (96.33%)
Table 4 Applications of artificial intelligence in gastric cancer prognosis based on different study population
Ref.YearCountry/regionNumber of casesStudy populationMethodsResults
Jiang et al[36]2018China786 casesHospitalSVM classifierAUCs (up to 0.834)
Lu et al[37]2017China939 patientsHospitalMMHGAccuracy (69.28%)
Korhani Kangi et al[38]2018Iran339 patientsHospitalANN, BNNSensitivity (88.2% for ANN, 90.3% for BNN), specificity (95.4% for ANN, 90.9% for BNN)
Zhang et al[39]2019China669 casesHospitalMLAUCs (up to 0.831)
Liu et al[40]2018China432 GC tissue samplesHospitalSVM classifierAccuracy (up to 94.19%)
Bollschweiler et al[41]2004Germany, Japan135 casesCancer centerANNAccuracy (93%)
Hensler et al[42]2005Germany, Japan4302 casesCancer centerQUEEN techniqueAccuracy (72.73%)
Jagric et al[43]2010Slovenia213 casesClinical centerLearning vector quantization neural networksSensitivity (71%), specificity (96.1%)