Published online Sep 28, 2020. doi: 10.3748/wjg.v26.i36.5408
Peer-review started: May 24, 2020
First decision: July 29, 2020
Revised: August 2, 2020
Accepted: August 29, 2020
Article in press: August 29, 2020
Published online: September 28, 2020
Processing time: 123 Days and 0.1 Hours
Gastric cancer is the fourth leading cause of cancer-related mortality across the globe, with a 5-year survival rate of less than 40%. In recent years, several applications of artificial intelligence (AI) have emerged in the gastric cancer field based on its efficient computational power and learning capacities, such as image-based diagnosis and prognosis prediction. AI-assisted diagnosis includes pathology, endoscopy, and computerized tomography, while researchers in the prognosis circle focus on recurrence, metastasis, and survival prediction. In this review, a comprehensive literature search was performed on articles published up to April 2020 from the databases of PubMed, Embase, Web of Science, and the Cochrane Library. Thereby the current status of AI-applications was systematically summarized in gastric cancer. Moreover, future directions that target this field were also analyzed to overcome the risk of overfitting AI models and enhance their accuracy as well as the applicability in clinical practice.
Core Tip: Recently, several applications of artificial intelligence have emerged in the gastric cancer field based on its efficient computational power and learning capacities, such as image-based diagnosis and prognosis prediction. In this review, we searched the relevant works published up to April 2020 from the databases of PubMed, Embase, Web of Science, and the Cochrane Library, thus comprehensively summarizing the current status of artificial intelligence applications in gastric cancer. In addition, challenges and future directions that target the field are also discussed to improve the accuracy and applicability of artificial intelligence models in clinical practice.