Published online May 15, 2003. doi: 10.3748/wjg.v9.i5.1077
Revised: November 23, 2002
Accepted: December 16, 2002
Published online: May 15, 2003
AIM: Allo-cell transplant rejection and autoimmune responses were associated with the presence of class II major histocompatibility complex (MHC II) molecules on cells. This paper studied the effect of Ribonuclease P (RNase P) against CIITA, which was a major regulator of MHCII molecules, on repressing the expression of MHCII molecules on hepatocyte.
METHODS: M1-RNA is the catalytic RNA subunit of RNase P from Escherichia coli. It were constructed that M1-RNA with guide sequences (GS) recognizing the 452, 3408 site of CIITA by PCR from pTK117 plasmid, then were cloned into the EcoR I/Bgl II or EcoR I/Sal I site of vector psNAV (psNAV-M1-452-GS, psNAV-M1-3408-GS) respectively. The target mould plate (3176-3560) of CIITA was obtained from Raji cell by RT-PCR, and then inserted into the Xho I/EcoR I of pGEM-7zf(+) plasmid (pGEM-3176). These recombinant plasmids were screened out by sequence analysis. psNAV-M1-452-GS, psNAV-M1-3408-GS and its target RNA pGEM-3176 were transcribed and then mixed up and incubated in vitro. It showed that M1-3408-GS could exclusively cleave target RNA that formed a base pair with the GS. Stable transfectants of hepatocyte cell line with psNAV-M1-3408-GS were tested for expression of class II MHC through FCM, for mRNA abundance of MHCII, Ii and CIITA by RT-PCR, for the level of IL-2 mRNA on T cell by mixed lymphocyte reaction.
RESULTS: When induced with recombinant human interferon-gamma (IFN-γ), the expression of HLA-DR, -DP, -DQ on psNAV-M1-3408-GS+ hepatocyte was reduced 83.27%, 88.93%, 58.82% respectively, the mRNA contents of CIITA, HLA-DR, -DP, -DQ and Ii decreased significantly. While T cell expressed less IL-2 mRNA in the case of psNAV-M1-3408-GS+ hepatocyte.
CONCLUSION: The Ribonuclease P against CIITA-M1-3408-GS could effectively induce antigen-specific tolerance through cleaving CIITA. These results provided insight into the future application of M1-3408-GS as a new nucleic acid drug against allo-transplantation rejection and autoimmune diseases.