Gastric Cancer
Copyright ©The Author(s) 2002. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Aug 15, 2002; 8(4): 602-607
Published online Aug 15, 2002. doi: 10.3748/wjg.v8.i4.602
Expression of sphingosine kinase gene in the interactions between human gastric carcinoma cell and vascular endothelial cell
Juan Ren, Lei Dong, Cang-Bao Xu, Bo-Rong Pan
Juan Ren, Department of Oncological Radiotherapy, First Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
Lei Dong, Department of Gastroenterology, Second Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
Cang-Bao Xu, Department of Pathophysiology, Lund University, Sweden
Bo-Rong Pan, Oncology Center, Xijing Hospital, Fourth Militry Medical University, Xi’an 710032, Shaanxi Province, China
Author contributions: All authors contributed equally to the work.
Correspondence to: Dr. Juan Ren, Department of Oncological Radiotherapy, First Hospital, Xi’an Jiaotong University Xi’an 710061, Shaanxi Province, China. renjuan88@163.net
Telephone: +86-29-3058229 Fax: +86-29-4333028
Received: March 29, 2002
Revised: April 15, 2002
Accepted: April 20, 2002
Published online: August 15, 2002
Abstract

AIM: To study the interactions between human gastric carcinoma cell (HGCC) and human vascular endothelial cell (HVEC), and if the expression of sphingosine kinase (SPK) gene was involved in these interactions.

METHODS: The specific inhibitor to SPK, dimethyl sphingosine (DMS), was added acting on HGCC and HVEC, then the cell proliferation was measured by MTT. The conditioned mediums (CMs) of HGCC and HVEC were prepared. The CM of one kind of cell was added to the other kind of cell, and the cell proliferation was measured by MTT. After the action of CM, the cellular expression of SPK gene in mRNA level was detected with in situ hybridization (ISH).

RESULTS: DMS could almost completely inhibit the proliferation of HGCC and HVEC. The growth inhibitory rates could amount to 97.21%, 83.42%, respectively (P < 0.01). The CM of HGCC could stimulate the growth of HVEC (2.70 ± 0.01, P < 0.01) while the CM of HVEC could inhibit the growth of HGCC (52.97% ± 0.01%, P < 0.01). There was no significant change in the mRNA level of SPK gene in one kind of cell after the action of the CM of the other kind of cell.

CONCLUSION: SPK plays a key role in regulating the proliferation of HGCC and HVEC. There exist complicated interactions between HGCC and HVEC. HGCC can significantly stimulate the growth of HVEC while HVEC can significantly inhibit the growth of HGCC. The expression of SPK gene is not involved in the interactions.

Keywords: $[Keywords]