Minireviews
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Oct 14, 2022; 28(38): 5547-5556
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5547
Oxidative stress bridges the gut microbiota and the occurrence of frailty syndrome
Si-Yue Chen, Tong-Yao Wang, Chao Zhao, Hui-Jing Wang
Si-Yue Chen, Hui-Jing Wang, Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai 201318, China
Tong-Yao Wang, Chao Zhao, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
Chao Zhao, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Frontiers Science Center, Shanghai 200032, China
Author contributions: Chen SY and Wang TY wrote the paper; Zhao C and Wang HJ supervised the writing and editing the manuscript.
Supported by the National Key Research and Development Program of China, No. 2018YFC2002000 and 2018YFC2000500/03; and Shanghai Natural Science Foundation, No. 21ZR1409200.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Hui-Jing Wang, PhD, Associate Professor, Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, No. 279, Zhouzhu Highway, Pudong New Area, Shanghai 201318, China. wanghj@sumhs.edu.cn
Received: August 1, 2022
Peer-review started: August 1, 2022
First decision: August 19, 2022
Revised: August 31, 2022
Accepted: September 23, 2022
Article in press: September 23, 2022
Published online: October 14, 2022
Processing time: 71 Days and 13.6 Hours
Abstract

The incidence of frailty gradually increases with age. This condition places a heavy burden on modern society, of which the aging population is increasing. Frailty is one of the most complicated clinical syndromes; thus, it is difficult to uncover its underlying mechanisms. Oxidative stress (OS) is involved in frailty in multiple ways. The association between the gut microbiota (GM) and frailty was recently reported. Herein, we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome. An imbalance between oxidation and antioxidants can eventually lead to frailty, and the GM probably participates in this process through the production of reactive oxygen species. On the other hand, OS can disturb the GM. Such dysbiosis consequently induces or exacerbates tissue damage, leading to the occurrence of frailty syndrome. Finally, we discuss the possibility of improving frailty by intervening in the vicious cycle between the imbalance of OS and dysbiosis.

Keywords: Oxidative stress; Gut microbiota; Frail syndrome; Traditional Chinese medicine

Core Tip: Frailty is defined as a decrease in the reserve and restoring capacity of the body. It is recognized that oxidative stress (OS) is involved in frailty in multiple ways; however, the underlying mechanisms are still unknown. The association between the gut microbiota (GM) and frailty was recently reported. Herein, we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome. The role of the imbalance between OS and dysbiosis is discussed in this review.