Minireviews
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jul 7, 2021; 27(25): 3802-3814
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3802
Emerging applications of radiomics in rectal cancer: State of the art and future perspectives
Min Hou, Ji-Hong Sun
Min Hou, Ji-Hong Sun, Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang Province, China
Author contributions: Hou M wrote and revised the manuscript for important intellectual content; Sun JH made critical revisions related to important intellectual content of the manuscript; both authors approved the final version of the article.
Supported by The National Natural Science Foundation of China, No. 81871403; and the Key Research and Development Program of Zhejiang Province, No. 2019C03014.
Conflict-of-interest statement: The authors declare no conflict of interests related to this manuscript.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ji-Hong Sun, MD, PhD, Attending Doctor, Professor, Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China. sunjihong@zju.edu.cn
Received: January 27, 2021
Peer-review started: January 27, 2021
First decision: May 2, 2021
Revised: May 6, 2021
Accepted: May 21, 2021
Article in press: May 21, 2021
Published online: July 7, 2021
Processing time: 159 Days and 13.1 Hours
Abstract

Rectal cancer (RC) is the third most commonly diagnosed cancer and has a high risk of mortality, although overall survival rates have improved. Preoperative assessments and predictions, including risk stratification, responses to therapy, long-term clinical outcomes, and gene mutation status, are crucial to guide the optimization of personalized treatment strategies. Radiomics is a novel approach that enables the evaluation of the heterogeneity and biological behavior of tumors by quantitative extraction of features from medical imaging. As these extracted features cannot be captured by visual inspection, the field holds significant promise. Recent studies have proved the rapid development of radiomics and validated its diagnostic and predictive efficacy. Nonetheless, existing radiomics research on RC is highly heterogeneous due to challenges in workflow standardization and limitations of objective cohort conditions. Here, we present a summary of existing research based on computed tomography and magnetic resonance imaging. We highlight the most salient issues in the field of radiomics and analyze the most urgent problems that require resolution. Our review provides a cutting-edge view of the use of radiomics to detect and evaluate RC, and will benefit researchers dedicated to using this state-of-the-art technology in the era of precision medicine.

Keywords: Computed tomography; Magnetic resonance imaging; Radiomics; Rectal cancer; Clinical applications; Overall survival

Core Tip: Radiomics has exhibited significant potential for risk stratification of rectal cancer and has yielded excellent performance in response assessment of neoadjuvant radiochemotherapy. While the past 3 years has witnessed an exponential growth of the field, research on radiomics remains in its infancy and is constantly evolving. More rigorous analyses are emerging, and improvements in bias reduction techniques accompanied with multicentric studies will hopefully enable more robust and generalizable models. Here, we review recent updates on the use of radiomics based on computed tomography and magnetic resonance imaging in the detection and evaluation of rectal cancer.