Published online Jul 21, 2017. doi: 10.3748/wjg.v23.i27.4920
Peer-review started: March 2, 2017
First decision: March 16, 2017
Revised: March 31, 2017
Accepted: June 18, 2017
Article in press: June 19, 2017
Published online: July 21, 2017
Processing time: 141 Days and 22.6 Hours
To investigate the effects of hydrogen-rich water (HRW) treatment on prevention of ethanol (EtOH)-induced early fatty liver in mice.
In vitro reduction of hydrogen peroxide by HRW was determined with a chemiluminescence system. Female mice were randomly divided into five groups: control, EtOH, EtOH + silymarin, EtOH + HRW and EtOH + silymarin + HRW. Each group was fed a Lieber-DeCarli liquid diet containing EtOH or isocaloric maltose dextrin (control diet). Silymarin was used as a positive control to compare HRW efficacy against chronic EtOH-induced hepatotoxicity. HRW was freshly prepared and given at a dosage of 1.2 mL/mouse trice daily. Blood and liver tissue were collected after chronic-binge liquid-diet feeding for 12 wk.
The in vitro study showed that HRW directly scavenged hydrogen peroxide. The in vivo study showed that HRW increased expression of acyl ghrelin, which was correlated with food intake. HRW treatment significantly reduced EtOH-induced increases in serum alanine aminotransferase, aspartate aminotransferase, triglycerol and total cholesterol levels, hepatic lipid accumulation and inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. HRW attenuated malondialdehyde level, restored glutathione depletion and increased superoxide dismutase, glutathione peroxidase and catalase activities in the liver. Moreover, HRW reduced TNF-α and IL-6 levels but increased IL-10 and IL-22 levels.
HRW protects against chronic EtOH-induced liver injury, possibly by inducing acyl ghrelin to suppress the pro-inflammatory cytokines TNF-α and IL-6 and induce IL-10 and IL-22, thus activating antioxidant enzymes against oxidative stress.
Core tip: Hydrogen-rich water (HRW), a safe and effective antioxidant with minimal side effects, is used in preventive and clinical applications. Few studies have investigated the effects of hydrogen on early alcoholic liver disease. The present study evaluated the potential protective effects of HRW against chronic ethanol (EtOH)-induced early liver injury and the underlying mechanisms in female mice after chronic-plus-binge EtOH feeding. HRW pretreatment protected against mild EtOH-induced liver injury, possibly by inducing acyl ghrelin to suppress tumor necrosis factor-alpha and interleukin (IL)-6 and induce IL-10 and IL-22, thereby activating antioxidant enzymes against oxidative stress. These results suggest that HRW helps prevent and treat EtOH-induced early liver injury.