Published online Jul 7, 2017. doi: 10.3748/wjg.v23.i25.4624
Peer-review started: February 16, 2017
First decision: April 7, 2017
Revised: April 10, 2017
Accepted: May 19, 2017
Article in press: May 19, 2017
Published online: July 7, 2017
Processing time: 141 Days and 20 Hours
To investigate alterations in the fecal microbiome using 16S rRNA amplicon sequencing in couples in the same cohabitation environment.
Fecal samples were collected from eight ulcerative colitis (UC) patients and their healthy partners at Lishui People’s Hospital, Zhejiang Province, China. DNA was extracted and the variable regions V3 and V4 of the 16S rRNA genes were PCR amplified using a two-step protocol. Clear reads were clustered into operational taxonomic units (OTUs) at the 97% sequence similarity level using UCLUST v1.2.22. The Wilcoxon rank-sum test (R v3.1.2) was used to compare inter-individual differences. Differences with a P value < 0.05 were considered statistically significant.
Fecal microbial communities were more similar among UC patients than their healthy partners (P = 0.024). UC individuals had a lower relative abundance of bacteria belonging to the Firmicutes, especially Blautia, Clostridium, Coprococcus and Roseburia (P < 0.05). Microbiota dysbiosis was detected in UC patients and their healthy partners. Relevant genera included Akkermansiam, Bacteroides, Escherichia, Lactobacillales, Klebsiella and Parabacteroides. The enriched pathways in fecal samples of UC patients were related to lipid and nucleotide metabolism. Additionally, the pathways involved in membrane transport and metabolism of cofactors and vitamins were more abundant in the healthy partners.
Our results suggested that the microbial composition might be affected in healthy partners cohabiting with UC patients, especially in terms of microbiota dysbiosis.
Core tip: To identify the influence on the gut microbial community between ulcerative colitis (UC) patients and their healthy partners, we investigated the gut bacterial community using 16S rRNA amplicon sequencing. The results showed that fecal microbial communities were more similar in UC patients, which had a lower relative abundance of Firmicutes bacteria. Microbiota dysbiosis was also founded in healthy partners. The pathways involved in lipid and nucleotide metabolism were more abundant in the UC patients. The membrane transport and metabolism of cofactors and vitamins pathways were significantly enriched in the healthy partners. Microbial composition might be affected in healthy partners cohabiting with UC patients.