Published online Sep 28, 2016. doi: 10.3748/wjg.v22.i36.8161
Peer-review started: May 25, 2016
First decision: July 13, 2016
Revised: August 1, 2016
Accepted: August 10, 2016
Article in press: August 10, 2016
Published online: September 28, 2016
Processing time: 124 Days and 14.5 Hours
A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.
Core tip: Currently, hepatitis B virus (HBV) infection still poses a serious threat to public health, and causes approximately 1 million deaths annually due to HBV-related liver diseases. Thus, investigation into the complex host cellular responses to HBV infection is a crucial area of research. Multiple epidemiologic data have proved that patients with HBV infection often have metabolic disorders. Therefore, we systematically reviewed the alterations in metabolic response to HBV infection with regard to molecular mechanisms. Deciphering the detailed interplay mechanisms would contribute to our understanding of HBV-induced pathological processes and may lead to nutritional therapies as new anti-HBV treatments.