Published online Jun 21, 2016. doi: 10.3748/wjg.v22.i23.5342
Peer-review started: December 4, 2015
First decision: December 21, 2015
Revised: April 6, 2016
Accepted: April 20, 2016
Article in press: April 20, 2016
Published online: June 21, 2016
Processing time: 193 Days and 11.3 Hours
AIM: To develop a potent and safe gene therapy for esophageal cancer.
METHODS: An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo.
RESULTS: Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity.
CONCLUSION: The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.
Core tip: Esophageal cancer is a highly aggressive neoplasm with poor prognosis and low survival rates. In this study, an expression vector carrying a fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, the expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase promoter. Our results showed that the novel expression vector was efficiently introduced into EC9706 cells by CPNP, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-fluorocytosine, it exhibited strong anti-tumor effects against esophageal cancer both in vitro and in vivo. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-cancer effects. Our study provides a novel approach for esophageal cancer-targeted gene therapy.