Published online May 21, 2016. doi: 10.3748/wjg.v22.i19.4685
Peer-review started: January 19, 2016
First decision: February 18, 2016
Revised: February 27, 2016
Accepted: March 13, 2016
Article in press: March 14, 2016
Published online: May 21, 2016
AIM: To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition.
METHODS: Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein.
RESULTS: Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment.
CONCLUSION: In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-mTOR expression and myocardial localization in cirrhotic rats.
Core tip: Enhanced levels of cardiac phosphorylated mammalian target of rapamycin (mTOR) contribute to impairment of electrophysiological and mechanical function induced by cirrhosis, called “cirrhotic cardiomyopathy”. Here, we find that the mTOR inhibitor rapamycin normalized the impaired inotropic responsiveness to β-adrenergic stimulation and prolonged Q-T interval in tetrachloride carbon (CCl4)-induced cirrhotic rats. Cardiac ventricular expression of phosphorylated-mTOR (p-mTOR) was increased in rats with cirrhosis, and this effect was ameliorated by rapamycin. CCl4-induced cirrhosis was associated with an increase in cardiac proinflammatory cytokine tumor necrosis factor-α, and this increase was reversed by rapamycin as well.