Review
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Mar 28, 2015; 21(12): 3492-3498
Published online Mar 28, 2015. doi: 10.3748/wjg.v21.i12.3492
Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update
Sheng Yan, Xue-Feng Yang, Hao-Lei Liu, Nian Fu, Yan Ouyang, Kai Qing
Sheng Yan, Xue-Feng Yang, Hao-Lei Liu, Nian Fu, Department of Gastroenterology, Affiliated Nanhua Hospital of University of South China, Hengyang 421001, Hunan Province, China
Yan Ouyang, Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
Kai Qing, Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
Author contributions: Yang XF designed the paper; Yan S performed research of literature data and wrote the paper; Liu HL wrote the paper; Fu N performed research of literature data and revised the paper; Ouyang Y and Qing K revised the paper.
Supported by National Natural Science Foundation of China, No. 81373465.
Conflict-of-interest: We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Xue-Feng Yang, Professor, Department of Gastroenterology, Affiliated Nanhua Hospital of University of South China, No. 336, South Dongfeng Road, Hengyang 421001, Hunan Province, China. yxf9988@126.com
Telephone: +86-734-8358399 Fax: +86-734-8358399
Received: September 30, 2014
Peer-review started: September 30, 2014
First decision: October 29, 2014
Revised: November 18, 2014
Accepted: January 21, 2015
Article in press: January 21, 2015
Published online: March 28, 2015
Abstract

Long-chain acyl-CoA synthetase (ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-CoAs, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or loss-of-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolism-associated effects of ACSLs in diseases.

Keywords: Long-chain acyl-CoA synthetase, Fatty acid, Proliferation, Apoptosis, Liver diseases, Metabolic diseases, Pathways

Core tip: Recent research has shown that long-chain acyl-CoA synthetase (ACSL) family members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to several diseases. These enzymes also regulate cell proliferation and apoptosis through different mechanisms. This review addresses new findings in the fatty acid metabolism-associated effects of ACSLs in diseases.