1
|
Scheppach MW, Mendel R, Muzalyova A, Rauber D, Probst A, Nagl S, Römmele C, Yip HC, Lau LHS, Gölder SK, Schmidt A, Kouladouros K, Abdelhafez M, Walter BM, Meinikheim M, Chiu PWY, Palm C, Messmann H, Ebigbo A. Use of artificial intelligence in submucosal vessel detection during third-space endoscopy. Endoscopy 2025. [PMID: 39909396 DOI: 10.1055/a-2534-1164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
While artificial intelligence (AI) shows high potential in decision support for diagnostic gastrointestinal endoscopy, its role in therapeutic endoscopy remains unclear. Third-space endoscopic procedures pose the risk of intraprocedural bleeding. Therefore, we aimed to develop an AI algorithm for intraprocedural blood vessel detection.Using a test dataset of 101 standardized video clips containing 200 predefined submucosal blood vessels, 19 endoscopists were evaluated for vessel detection rate (VDR) and time (VDT) with and without support of an AI algorithm. Endoscopists were grouped according to experience in endoscopic submucosal dissection.With AI support, endoscopist VDR increased from 56.4% (95%CI CI 54.1-58.6) to 72.4% (95%CI CI 70.3-74.4). Endoscopist VDT dropped from 6.7 seconds (95%CI 6.2-7.1) to 5.2 seconds (95%CI 4.8-5.7). False-positive readings appeared in 4.5% of frames and were marked for a significantly shorter time than true positives (0.7 seconds [95%CI 0.55-0.87] vs. 6.0 seconds [95%CI 5.28-6.70]).AI improved the VDR and VDT of endoscopists during third-space endoscopy. While these data need to be corroborated by clinical trials, AI may prove to be an invaluable tool for improving safety and speed of endoscopic interventions.
Collapse
Affiliation(s)
- Markus W Scheppach
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital of Augsburg, Augsburg, Germany
| | - Robert Mendel
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
| | - Anna Muzalyova
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
| | - Andreas Probst
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital of Augsburg, Augsburg, Germany
| | - Sandra Nagl
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital of Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital of Augsburg, Augsburg, Germany
| | - Hon Chi Yip
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Louis H S Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Stefan K Gölder
- Department of Internal Medicine I - Gastroenterology, Ostalb-Klinikum Aalen, Aalen, Germany
| | - Arthur Schmidt
- Department of Gastroenterology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Konstantinos Kouladouros
- Department of Surgery, University Hospital Mannheim, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mohamed Abdelhafez
- Internal Medicine II - Gastroenterology, Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benjamin M Walter
- Department of Gastroenterology, University Hospital of Ulm, Ulm, Germany
| | - Michael Meinikheim
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Philip W Y Chiu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christoph Palm
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
- Regensburg Center of Health Sciences and Technology (RCHST), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
| | - Helmut Messmann
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital of Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Internal Medicine III - Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital of Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
3
|
Ebigbo A, Messmann H, Lee SH. Artificial Intelligence Applications in Image-Based Diagnosis of Early Esophageal and Gastric Neoplasms. Gastroenterology 2025:S0016-5085(25)00471-8. [PMID: 40043857 DOI: 10.1053/j.gastro.2025.01.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
Artificial intelligence (AI) holds the potential to transform the management of upper gastrointestinal (GI) conditions, such as Barrett's esophagus, esophageal squamous cell cancer, and early gastric cancer. Advancements in deep learning and convolutional neural networks offer improved diagnostic accuracy and reduced diagnostic variability across different clinical settings, particularly where human error or fatigue may impair diagnostic precision. Deep learning models have shown the potential to improve early cancer detection and lesion characterization, predict invasion depth, and delineate lesion margins with remarkable accuracy, all contributing to effective treatment planning. Several challenges, however, limit the broad application of AI in GI endoscopy, particularly in the upper GI tract. Subtle lesion morphology and restricted diversity in training datasets, which are often sourced from specialized centers, may constrain the generalizability of AI models in various clinical settings. Furthermore, the "black box" nature of some AI systems can impede explainability and clinician trust. To address these issues, efforts are underway to incorporate multimodal data, such as combining endoscopic and histopathologic imaging, to bolster model robustness and transparency. In the future, AI promises substantial advancements in automated real-time endoscopic guidance, personalized risk assessment, and optimized biopsy decision making. As it evolves, it would substantially impact not only early diagnosis and prognosis, but also the cost-effectiveness of managing upper GI diseases, ultimately leading to improved patient outcomes and more efficient health care delivery.
Collapse
Affiliation(s)
- Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Seoul St. Mary's Hospital, Seoul, South Korea.
| |
Collapse
|
4
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
5
|
Sreedharan JK, Saleh F, Alqahtani A, Albalawi IA, Gopalakrishnan GK, Alahmed HA, Alsultan BA, Alalharith DM, Alnasser M, Alahmari AD, Karthika M. Applications of artificial intelligence in emergency and critical care diagnostics: a systematic review and meta-analysis. Front Artif Intell 2024; 7:1422551. [PMID: 39430618 PMCID: PMC11487586 DOI: 10.3389/frai.2024.1422551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Artificial intelligence has come to be the highlight in almost all fields of science. It uses various models and algorithms to detect patterns and specific findings to diagnose a disease with utmost accuracy. With the increasing need for accurate and precise diagnosis of disease, employing artificial intelligence models and concepts in healthcare setup can be beneficial. Methodology The search engines and databases employed in this study are PubMed, ScienceDirect and Medline. Studies published between 1st January 2013 to 1st February 2023 were included in this analysis. The selected articles were screened preliminarily using the Rayyan web tool, after which investigators screened the selected articles individually. The risk of bias for the selected studies was assessed using QUADAS-2 tool specially designed to test bias among studies related to diagnostic test reviews. Results In this review, 17 studies were included from a total of 12,173 studies. These studies were analysed for their sensitivity, accuracy, positive predictive value, specificity and negative predictive value in diagnosing barrette's neoplasia, cardiac arrest, esophageal adenocarcinoma, sepsis and gastrointestinal stromal tumors. All the studies reported heterogeneity with p-value <0.05 at confidence interval 95%. Conclusion The existing evidential data suggests that artificial intelligence can be highly helpful in the field of diagnosis providing maximum precision and early detection. This helps to prevent disease progression and also helps to provide treatment at the earliest. Employing artificial intelligence in diagnosis will define the advancement of health care environment and also be beneficial in every aspect concerned with treatment to illnesses.
Collapse
Affiliation(s)
- Jithin K. Sreedharan
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Fred Saleh
- Deanship—College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Abdullah Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ibrahim Ahmed Albalawi
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | | | | | | | - Musallam Alnasser
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ayedh Dafer Alahmari
- Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Manjush Karthika
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Jukema JB, Kusters CHJ, Jong MR, Fockens KN, Boers T, van der Putten JA, Pouw RE, Duits LC, Weusten BLAM, Herrero LA, Houben MHMG, Nagengast WB, Westerhof J, Alkhalaf A, Mallant-Hent R, Scholten P, Ragunath K, Seewald S, Elbe P, Silva FB, Barret M, Ortiz Fernández-Sordo J, Moral Villarejo G, Pech O, Beyna T, Montazeri NSM, der Sommen FV, de With PH, de Groof AJ, Bergman JJ. Computer-aided diagnosis improves characterization of Barrett's neoplasia by general endoscopists (with video). Gastrointest Endosc 2024; 100:616-625.e8. [PMID: 38636819 DOI: 10.1016/j.gie.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND AIMS Characterization of visible abnormalities in patients with Barrett's esophagus (BE) can be challenging, especially for inexperienced endoscopists. This results in suboptimal diagnostic accuracy and poor interobserver agreement. Computer-aided diagnosis (CADx) systems may assist endoscopists. We aimed to develop, validate, and benchmark a CADx system for BE neoplasia. METHODS The CADx system received pretraining with ImageNet and then consecutive domain-specific pretraining with GastroNet, which includes 5 million endoscopic images. It was subsequently trained and internally validated using 1758 narrow-band imaging (NBI) images of early BE neoplasia (352 patients) and 1838 NBI images of nondysplastic BE (173 patients) from 8 international centers. CADx was tested prospectively on corresponding image and video test sets with 30 cases (20 patients) of BE neoplasia and 60 cases (31 patients) of nondysplastic BE. The test set was benchmarked by 44 general endoscopists in 2 phases (phase 1, no CADx assistance; phase 2, with CADx assistance). Ten international BE experts provided additional benchmark performance. RESULTS Stand-alone sensitivity and specificity of the CADx system were 100% and 98% for images and 93% and 96% for videos, respectively. CADx outperformed general endoscopists without CADx assistance in terms of sensitivity (P = .04). Sensitivity and specificity of general endoscopists increased from 84% to 96% and 90% to 98% with CAD assistance (P < .001). CADx assistance increased endoscopists' confidence in characterization (P < .001). CADx performance was similar to that of the BE experts. CONCLUSIONS CADx assistance significantly increased characterization performance of BE neoplasia by general endoscopists to the level of expert endoscopists. The use of this CADx system may thereby improve daily Barrett surveillance.
Collapse
Affiliation(s)
- Jelmer B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Martijn R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki N Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Boers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost A van der Putten
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Roos E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lucas C Duits
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas L A M Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, the Netherlands; Department of Gastroenterology and Hepatology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Lorenza Alvarez Herrero
- Department of Gastroenterology and Hepatology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Martin H M G Houben
- Department of Gastroenterology and Hepatology, HagaZiekenhuis Den Haag, Den Haag, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessie Westerhof
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, the Netherlands
| | - Alaa Alkhalaf
- Department of Gastroenterology and Hepatology, Isala Hospital Zwolle, Zwolle, the Netherlands
| | - Rosalie Mallant-Hent
- Department of Gastroenterology and Hepatology, Flevoziekenhuis Almere, Almere, the Netherlands
| | - Pieter Scholten
- Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Krish Ragunath
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Curtin University, Perth, WA, Australia
| | - Stefan Seewald
- Department of Gastroenterology and Hepatology, Hirslanden Klinik, Zurich, Switzerland
| | - Peter Elbe
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Division of Surgery, Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Baldaque Silva
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Advanced Endoscopy Carlos Moreira da Silva, Gastroenterology Department, Pedro Hispano Hospital, ULSM Matosinhos, Portugal
| | - Maximilien Barret
- Department of Gastroenterology and Hepatology, Cochin Hospital Paris, Paris, France
| | - Jacobo Ortiz Fernández-Sordo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Guiomar Moral Villarejo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Oliver Pech
- Department of Gastroenterology and Hepatology, St. John of God Hospital, Regensburg, Germany
| | - Torsten Beyna
- Department of Gastroenterology and Hepatology, Evangalisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - Nahid S M Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter H de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Jeroen de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Theocharopoulos C, Davakis S, Ziogas DC, Theocharopoulos A, Foteinou D, Mylonakis A, Katsaros I, Gogas H, Charalabopoulos A. Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer. Cancers (Basel) 2024; 16:3285. [PMID: 39409906 PMCID: PMC11475041 DOI: 10.3390/cancers16193285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer has a dismal prognosis and necessitates a multimodal and multidisciplinary approach from diagnosis to treatment. High-definition white-light endoscopy and histopathological confirmation remain the gold standard for the definitive diagnosis of premalignant and malignant lesions. Artificial intelligence using deep learning (DL) methods for image analysis constitutes a promising adjunct for the clinical endoscopist that could effectively decrease BE overdiagnosis and unnecessary surveillance, while also assisting in the timely detection of dysplastic BE and esophageal cancer. A plethora of studies published during the last five years have consistently reported highly accurate DL algorithms with comparable or superior performance compared to endoscopists. Recent efforts aim to expand DL utilization into further aspects of esophageal neoplasia management including histologic diagnosis, segmentation of gross tumor volume, pretreatment prediction and post-treatment evaluation of patient response to systemic therapy and operative guidance during minimally invasive esophagectomy. Our manuscript serves as an introduction to the growing literature of DL applications for image analysis in the management of esophageal neoplasia, concisely presenting all currently published studies. We also aim to guide the clinician across basic functional principles, evaluation metrics and limitations of DL for image recognition to facilitate the comprehension and critical evaluation of the presented studies.
Collapse
Affiliation(s)
| | - Spyridon Davakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Achilleas Theocharopoulos
- Department of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece;
| | - Dimitra Foteinou
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Adam Mylonakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Ioannis Katsaros
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Helen Gogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Alexandros Charalabopoulos
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| |
Collapse
|
8
|
Meinikheim M, Mendel R, Palm C, Probst A, Muzalyova A, Scheppach MW, Nagl S, Schnoy E, Römmele C, Schulz DAH, Schlottmann J, Prinz F, Rauber D, Rückert T, Matsumura T, Fernández-Esparrach G, Parsa N, Byrne MF, Messmann H, Ebigbo A. Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial. Endoscopy 2024; 56:641-649. [PMID: 38547927 DOI: 10.1055/a-2296-5696] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
BACKGROUND This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). METHODS 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. RESULTS AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%-74.2%] to 78.0% [95%CI 74.0%-82.0%]; specificity 67.3% [95%CI 62.5%-72.2%] to 72.7% [95%CI 68.2%-77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. CONCLUSION BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.
Collapse
Affiliation(s)
- Michael Meinikheim
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Robert Mendel
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Christoph Palm
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Andreas Probst
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Anna Muzalyova
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Markus W Scheppach
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Sandra Nagl
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Elisabeth Schnoy
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Dominik A H Schulz
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Jakob Schlottmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Friederike Prinz
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tobias Rückert
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tomoaki Matsumura
- Department of Gastroenterology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Glòria Fernández-Esparrach
- Endoscopy Unit, Gastroenterology Department, ICMDM, Hospital Clínic de Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Nasim Parsa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, United States
- Satisfai Health, Vancouver, Canada
| | - Michael F Byrne
- Satisfai Health, Vancouver, Canada
- Gastroenterology, Vancouver General Hospital, The University of British Columbia, Vancouver, Canada
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
9
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
10
|
Jong MR, de Groof AJ. Advancement of artificial intelligence systems for surveillance endoscopy of Barrett's esophagus. Dig Liver Dis 2024; 56:1126-1130. [PMID: 38071181 DOI: 10.1016/j.dld.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 06/29/2024]
Abstract
Barrett's esophagus (BE) is a precursor disease for esophageal adenocarcinoma. Timely detection and treatment has significant influence on patient outcomes. Over the last years, several artificial intelligence (AI) systems have emerged to assist the endoscopist. The primary focus of research has been computer aided detection (CADe). Several groups have succeeded in developing competitive models for neoplasia detection. Additionally, computer aided diagnosis (CADx) models have been developed for subsequent lesion characterization and assistance in clinical decision making. Future studies should focus on bridging the domain gap between academic development and integration in daily practice.
Collapse
Affiliation(s)
- M R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - A J de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Jaspers TJM, Boers TGW, Kusters CHJ, Jong MR, Jukema JB, de Groof AJ, Bergman JJ, de With PHN, van der Sommen F. Robustness evaluation of deep neural networks for endoscopic image analysis: Insights and strategies. Med Image Anal 2024; 94:103157. [PMID: 38574544 DOI: 10.1016/j.media.2024.103157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Computer-aided detection and diagnosis systems (CADe/CADx) in endoscopy are commonly trained using high-quality imagery, which is not representative for the heterogeneous input typically encountered in clinical practice. In endoscopy, the image quality heavily relies on both the skills and experience of the endoscopist and the specifications of the system used for screening. Factors such as poor illumination, motion blur, and specific post-processing settings can significantly alter the quality and general appearance of these images. This so-called domain gap between the data used for developing the system and the data it encounters after deployment, and the impact it has on the performance of deep neural networks (DNNs) supportive endoscopic CAD systems remains largely unexplored. As many of such systems, for e.g. polyp detection, are already being rolled out in clinical practice, this poses severe patient risks in particularly community hospitals, where both the imaging equipment and experience are subject to considerable variation. Therefore, this study aims to evaluate the impact of this domain gap on the clinical performance of CADe/CADx for various endoscopic applications. For this, we leverage two publicly available data sets (KVASIR-SEG and GIANA) and two in-house data sets. We investigate the performance of commonly-used DNN architectures under synthetic, clinically calibrated image degradations and on a prospectively collected dataset including 342 endoscopic images of lower subjective quality. Additionally, we assess the influence of DNN architecture and complexity, data augmentation, and pretraining techniques for improved robustness. The results reveal a considerable decline in performance of 11.6% (±1.5) as compared to the reference, within the clinically calibrated boundaries of image degradations. Nevertheless, employing more advanced DNN architectures and self-supervised in-domain pre-training effectively mitigate this drop to 7.7% (±2.03). Additionally, these enhancements yield the highest performance on the manually collected test set including images with lower subjective quality. By comprehensively assessing the robustness of popular DNN architectures and training strategies across multiple datasets, this study provides valuable insights into their performance and limitations for endoscopic applications. The findings highlight the importance of including robustness evaluation when developing DNNs for endoscopy applications and propose strategies to mitigate performance loss.
Collapse
Affiliation(s)
- Tim J M Jaspers
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Tim G W Boers
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martijn R Jong
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jelmer B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert J de Groof
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter H N de With
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Li H, Liu D, Zeng Y, Liu S, Gan T, Rao N, Yang J, Zeng B. Single-Image-Based Deep Learning for Segmentation of Early Esophageal Cancer Lesions. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:2676-2688. [PMID: 38530733 DOI: 10.1109/tip.2024.3379902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Accurate segmentation of lesions is crucial for diagnosis and treatment of early esophageal cancer (EEC). However, neither traditional nor deep learning-based methods up to today can meet the clinical requirements, with the mean Dice score - the most important metric in medical image analysis - hardly exceeding 0.75. In this paper, we present a novel deep learning approach for segmenting EEC lesions. Our method stands out for its uniqueness, as it relies solely on a single input image from a patient, forming the so-called "You-Only-Have-One" (YOHO) framework. On one hand, this "one-image-one-network" learning ensures complete patient privacy as it does not use any images from other patients as the training data. On the other hand, it avoids nearly all generalization-related problems since each trained network is applied only to the same input image itself. In particular, we can push the training to "over-fitting" as much as possible to increase the segmentation accuracy. Our technical details include an interaction with clinical doctors to utilize their expertise, a geometry-based data augmentation over a single lesion image to generate the training dataset (the biggest novelty), and an edge-enhanced UNet. We have evaluated YOHO over an EEC dataset collected by ourselves and achieved a mean Dice score of 0.888, which is much higher as compared to the existing deep-learning methods, thus representing a significant advance toward clinical applications. The code and dataset are available at: https://github.com/lhaippp/YOHO.
Collapse
|
13
|
Ebert MP, Fischbach W, Hollerbach S, Höppner J, Lorenz D, Stahl M, Stuschke M, Pech O, Vanhoefer U, Porschen R. S3-Leitlinie Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:535-642. [PMID: 38599580 DOI: 10.1055/a-2239-9802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Matthias P Ebert
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universitätsmedizin, Universität Heidelberg, Mannheim
- DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim, Mannheim
- Molecular Medicine Partnership Unit, EMBL, Heidelberg
| | - Wolfgang Fischbach
- Deutsche Gesellschaft zur Bekämpfung der Krankheiten von Magen, Darm und Leber sowie von Störungen des Stoffwechsels und der Ernährung (Gastro-Liga) e. V., Giessen
| | | | - Jens Höppner
- Klinik für Allgemeine Chirurgie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck
| | - Dietmar Lorenz
- Chirurgische Klinik I, Allgemein-, Viszeral- und Thoraxchirurgie, Klinikum Darmstadt, Darmstadt
| | - Michael Stahl
- Klinik für Internistische Onkologie und onkologische Palliativmedizin, Evang. Huyssensstiftung, Evang. Kliniken Essen-Mitte, Essen
| | - Martin Stuschke
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Essen, Essen
| | - Oliver Pech
- Klinik für Gastroenterologie und Interventionelle Endoskopie, Krankenhaus Barmherzige Brüder, Regensburg
| | - Udo Vanhoefer
- Klinik für Hämatologie und Onkologie, Katholisches Marienkrankenhaus, Hamburg
| | - Rainer Porschen
- Gastroenterologische Praxis am Kreiskrankenhaus Osterholz, Osterholz-Scharmbeck
| |
Collapse
|
14
|
Chempak Kumar A, Mubarak DMN. Ensembled CNN with artificial bee colony optimization method for esophageal cancer stage classification using SVM classifier. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:31-51. [PMID: 37980593 DOI: 10.3233/xst-230111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Esophageal cancer (EC) is aggressive cancer with a high fatality rate and a rapid rise of the incidence globally. However, early diagnosis of EC remains a challenging task for clinicians. OBJECTIVE To help address and overcome this challenge, this study aims to develop and test a new computer-aided diagnosis (CAD) network that combines several machine learning models and optimization methods to detect EC and classify cancer stages. METHODS The study develops a new deep learning network for the classification of the various stages of EC and the premalignant stage, Barrett's Esophagus from endoscopic images. The proposed model uses a multi-convolution neural network (CNN) model combined with Xception, Mobilenetv2, GoogLeNet, and Darknet53 for feature extraction. The extracted features are blended and are then applied on to wrapper based Artificial Bee Colony (ABC) optimization technique to grade the most accurate and relevant attributes. A multi-class support vector machine (SVM) classifies the selected feature set into the various stages. A study dataset involving 523 Barrett's Esophagus images, 217 ESCC images and 288 EAC images is used to train the proposed network and test its classification performance. RESULTS The proposed network combining Xception, mobilenetv2, GoogLeNet, and Darknet53 outperforms all the existing methods with an overall classification accuracy of 97.76% using a 3-fold cross-validation method. CONCLUSION This study demonstrates that a new deep learning network that combines a multi-CNN model with ABC and a multi-SVM is more efficient than those with individual pre-trained networks for the EC analysis and stage classification.
Collapse
Affiliation(s)
- A Chempak Kumar
- Department of Computer Science, University of Kerala, Trivandrum, Kerala, India
| | | |
Collapse
|
15
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Fockens KN, Jong MR, Jukema JB, Boers TGW, Kusters CHJ, van der Putten JA, Pouw RE, Duits LC, Montazeri NSM, van Munster SN, Weusten BLAM, Alvarez Herrero L, Houben MHMG, Nagengast WB, Westerhof J, Alkhalaf A, Mallant-Hent RC, Scholten P, Ragunath K, Seewald S, Elbe P, Baldaque-Silva F, Barret M, Ortiz Fernández-Sordo J, Villarejo GM, Pech O, Beyna T, van der Sommen F, de With PH, de Groof AJ, Bergman JJ. A deep learning system for detection of early Barrett's neoplasia: a model development and validation study. Lancet Digit Health 2023; 5:e905-e916. [PMID: 38000874 DOI: 10.1016/s2589-7500(23)00199-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Computer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus. METHODS The CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs). FINDINGS Sensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73-2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90-2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96-1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79-1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88-98) of images and 97% (90-99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93-8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85-47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83-3·65] for images and 91% vs 86% [2·94; 0·99-11·40] for video). INTERPRETATION CADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases. FUNDING Olympus.
Collapse
Affiliation(s)
- K N Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - M R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - T G W Boers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - C H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J A van der Putten
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - R E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - L C Duits
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - N S M Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S N van Munster
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - B L A M Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - L Alvarez Herrero
- Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - M H M G Houben
- Department of Gastroenterology and Hepatology, HagaZiekenhuis Den Haag, Den Haag, Netherlands
| | - W B Nagengast
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, Netherlands
| | - J Westerhof
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, Netherlands
| | - A Alkhalaf
- Department of Gastroenterology and Hepatology, Isala Hospital Zwolle, Zwolle, Netherlands
| | - R C Mallant-Hent
- Department of Gastroenterology and Hepatology, Flevoziekenhuis Almere, Almere, Netherlands
| | - P Scholten
- Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - K Ragunath
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Curtin University, Perth, WA, Australia
| | - S Seewald
- Department of Gastroenterology and Hepatology, Hirslanden Klinik, Zurich, Switzerland
| | - P Elbe
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - F Baldaque-Silva
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Advanced Endoscopy Carlos Moreira da Silva, Gastroenterology Department, Pedro Hispano Hospital, Matosinhos, Portugal
| | - M Barret
- Department of Gastroenterology and Hepatology, Cochin Hospital Paris, Paris, France
| | - J Ortiz Fernández-Sordo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - G Moral Villarejo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - O Pech
- Department of Gastroenterology and Hepatology, St John of God Hospital, Regensburg, Germany
| | - T Beyna
- Department of Gastroenterology and Hepatology, Evangalisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - F van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - P H de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - A J de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
17
|
Guidozzi N, Menon N, Chidambaram S, Markar SR. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis. Dis Esophagus 2023; 36:doad048. [PMID: 37480192 PMCID: PMC10789250 DOI: 10.1093/dote/doad048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Early detection of esophageal cancer is limited by accurate endoscopic diagnosis of subtle macroscopic lesions. Endoscopic interpretation is subject to expertise, diagnostic skill, and thus human error. Artificial intelligence (AI) in endoscopy is increasingly bridging this gap. This systematic review and meta-analysis consolidate the evidence on the use of AI in the endoscopic diagnosis of esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE and Ovid EMBASE databases and articles on the role of AI in the endoscopic diagnosis of esophageal cancer management were included. A meta-analysis was also performed. Fourteen studies (1590 patients) assessed the use of AI in endoscopic diagnosis of esophageal squamous cell carcinoma-the pooled sensitivity and specificity were 91.2% (84.3-95.2%) and 80% (64.3-89.9%). Nine studies (478 patients) assessed AI capabilities of diagnosing esophageal adenocarcinoma with the pooled sensitivity and specificity of 93.1% (86.8-96.4) and 86.9% (81.7-90.7). The remaining studies formed the qualitative summary. AI technology, as an adjunct to endoscopy, can assist in accurate, early detection of esophageal malignancy. It has shown superior results to endoscopists alone in identifying early cancer and assessing depth of tumor invasion, with the added benefit of not requiring a specialized skill set. Despite promising results, the application in real-time endoscopy is limited, and further multicenter trials are required to accurately assess its use in routine practice.
Collapse
Affiliation(s)
- Nadia Guidozzi
- Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa
| | - Nainika Menon
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
| | - Swathikan Chidambaram
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, UK
| | - Sheraz Rehan Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15:1998-2016. [DOI: 10.4251/wjgo.v15.i11.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Esophageal cancer is the seventh-most common cancer type worldwide, accounting for 5% of death from malignancy. Development of novel diagnostic techniques has facilitated screening, early detection, and improved prognosis. Convolutional neural network (CNN)-based image analysis promises great potential for diagnosing and determining the prognosis of esophageal cancer, enabling even early detection of dysplasia.
AIM To conduct a meta-analysis of the diagnostic accuracy of CNN models for the diagnosis of esophageal cancer and high-grade dysplasia (HGD).
METHODS PubMed, EMBASE, Web of Science and Cochrane Library databases were searched for articles published up to November 30, 2022. We evaluated the diagnostic accuracy of using the CNN model with still image-based analysis and with video-based analysis for esophageal cancer or HGD, as well as for the invasion depth of esophageal cancer. The pooled sensitivity, pooled specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were estimated, together with the 95% confidence intervals (CI). A bivariate method and hierarchical summary receiver operating characteristic method were used to calculate the diagnostic test accuracy of the CNN model. Meta-regression and subgroup analyses were used to identify sources of heterogeneity.
RESULTS A total of 28 studies were included in this systematic review and meta-analysis. Using still image-based analysis for the diagnosis of esophageal cancer or HGD provided a pooled sensitivity of 0.95 (95%CI: 0.92-0.97), pooled specificity of 0.92 (0.89-0.94), PLR of 11.5 (8.3-16.0), NLR of 0.06 (0.04-0.09), DOR of 205 (115-365), and AUC of 0.98 (0.96-0.99). When video-based analysis was used, a pooled sensitivity of 0.85 (0.77-0.91), pooled specificity of 0.73 (0.59-0.83), PLR of 3.1 (1.9-5.0), NLR of 0.20 (0.12-0.34), DOR of 15 (6-38) and AUC of 0.87 (0.84-0.90) were found. Prediction of invasion depth resulted in a pooled sensitivity of 0.90 (0.87-0.92), pooled specificity of 0.83 (95%CI: 0.76-0.88), PLR of 7.8 (1.9-32.0), NLR of 0.10 (0.41-0.25), DOR of 118 (11-1305), and AUC of 0.95 (0.92-0.96).
CONCLUSION CNN-based image analysis in diagnosing esophageal cancer and HGD is an excellent diagnostic method with high sensitivity and specificity that merits further investigation in large, multicenter clinical trials.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun-Jie Mi
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Rong Wang
- Department of Gastroenterology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
19
|
Cui R, Wang L, Lin L, Li J, Lu R, Liu S, Liu B, Gu Y, Zhang H, Shang Q, Chen L, Tian D. Deep Learning in Barrett's Esophagus Diagnosis: Current Status and Future Directions. Bioengineering (Basel) 2023; 10:1239. [PMID: 38002363 PMCID: PMC10669008 DOI: 10.3390/bioengineering10111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Barrett's esophagus (BE) represents a pre-malignant condition characterized by abnormal cellular proliferation in the distal esophagus. A timely and accurate diagnosis of BE is imperative to prevent its progression to esophageal adenocarcinoma, a malignancy associated with a significantly reduced survival rate. In this digital age, deep learning (DL) has emerged as a powerful tool for medical image analysis and diagnostic applications, showcasing vast potential across various medical disciplines. In this comprehensive review, we meticulously assess 33 primary studies employing varied DL techniques, predominantly featuring convolutional neural networks (CNNs), for the diagnosis and understanding of BE. Our primary focus revolves around evaluating the current applications of DL in BE diagnosis, encompassing tasks such as image segmentation and classification, as well as their potential impact and implications in real-world clinical settings. While the applications of DL in BE diagnosis exhibit promising results, they are not without challenges, such as dataset issues and the "black box" nature of models. We discuss these challenges in the concluding section. Essentially, while DL holds tremendous potential to revolutionize BE diagnosis, addressing these challenges is paramount to harnessing its full capacity and ensuring its widespread application in clinical practice.
Collapse
Affiliation(s)
- Ruichen Cui
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Lei Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
- West China School of Nursing, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Lin Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
- West China School of Nursing, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jie Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
- West China School of Nursing, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Runda Lu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Shixiang Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Bowei Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Yimin Gu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| |
Collapse
|
20
|
Tee CHN, Ravi R, Ang TL, Li JW. Role of artificial intelligence in Barrett’s esophagus. Artif Intell Gastroenterol 2023; 4:28-35. [DOI: 10.35712/aig.v4.i2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 09/07/2023] Open
Abstract
The application of artificial intelligence (AI) in gastrointestinal endoscopy has gained significant traction over the last decade. One of the more recent applications of AI in this field includes the detection of dysplasia and cancer in Barrett’s esophagus (BE). AI using deep learning methods has shown promise as an adjunct to the endoscopist in detecting dysplasia and cancer. Apart from visual detection and diagnosis, AI may also aid in reducing the considerable interobserver variability in identifying and distinguishing dysplasia on whole slide images from digitized BE histology slides. This review aims to provide a comprehensive summary of the key studies thus far as well as providing an insight into the future role of AI in Barrett’s esophagus.
Collapse
Affiliation(s)
- Chin Hock Nicholas Tee
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - Rajesh Ravi
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| |
Collapse
|
21
|
Merchán Gómez B, Milla Collado L, Rodríguez M. Artificial intelligence in esophageal cancer diagnosis and treatment: where are we now?-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:353. [PMID: 37675332 PMCID: PMC10477654 DOI: 10.21037/atm-22-3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/21/2023] [Indexed: 09/08/2023]
Abstract
Background and Objective Artificial intelligence (AI) use is becoming increasingly prevalent directly or indirectly in daily clinical practice, including esophageal cancer (EC) diagnosis and treatment. Although the limits of its adoption and their clinical benefits are still unknown, any physician related to EC patients' management should be aware of the status and future perspectives of AI use in their field. The purpose of this review is to summarize the existing literature regarding the role of AI in diagnosis and treatment of EC. We have focused on the aids AI entails in the management of this pathology and we have tried to offer an updated perspective to maximize current applications and to identify potential future uses of it. Methods Data concerning AI applied to EC diagnosis and treatment is not limited, including direct (those specifically related to them) and indirect (those referring to other specialties as radiology or pathology), applications. However, the clinical relevance of the discussed and presented models is still unknown. We performed a research in PubMed of English and Spanish written studies from January 1970 to June 2022. Key Content and Findings Information regarding the role of AI in EC diagnosis and treatment has increased exponentially in recent years. Several models, including different variables and features have been investigated and some of them internally and externally validated. However, the main challenge remains to apply and introduce all these data into clinical practice, and, as some of the discussed studies argue, if the models are able to enhance experienced endoscopists' judgement. Although AI use is increasing steadily in different medical specialties, the truth is, most of the time, the gap between model development and clinical implementation is not closed. Learning to understand the routinely application of AI, as well as future improvements, would lead to a broadened adoption. Conclusions Physicians should be aware of the multiple current clinical uses of AI in EC diagnosis and treatment and should take part in their clinical application and future developments to enhance patient care.
Collapse
Affiliation(s)
| | | | - María Rodríguez
- Thoracic Surgery Department, Clínica Universidad de Navarra, Madrid, Spain
| |
Collapse
|
22
|
Abdelrahim M, Saiko M, Maeda N, Hossain E, Alkandari A, Subramaniam S, Parra-Blanco A, Sanchez-Yague A, Coron E, Repici A, Bhandari P. Development and validation of artificial neural networks model for detection of Barrett's neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointest Endosc 2023; 97:422-434. [PMID: 36283443 DOI: 10.1016/j.gie.2022.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS The aim of this study was to develop and externally validate a computer-aided detection (CAD) system for the detection and localization of Barrett's neoplasia and assess its performance compared with that of general endoscopists in a statistically powered multicenter study by using real-time video sequences. METHODS In phase 1, the hybrid visual geometry group 16-SegNet model was trained by the use of 75,198 images and videos (96 patients) of neoplastic and 1,014,973 images and videos (65 patients) of nonneoplastic Barrett's esophagus. In phase 2, image-based validation was performed on a separate dataset of 107 images (20 patients) of neoplastic and 364 images (14 patients) of nonneoplastic Barrett's esophagus. In phase 3 (video-based external validation) we designed a real-time video-based study with 32 videos (32 patients) of neoplastic and 43 videos (43 patients) of nonneoplastic Barrett's esophagus from 4 European centers to compare the performance of the CAD model with that of 6 nonexpert endoscopists. The primary endpoint was the sensitivity of CAD diagnosis of Barrett's neoplasia. RESULTS In phase 2, CAD detected Barrett's neoplasia with sensitivity, specificity, and accuracy of 95.3%, 94.5%, and 94.7%, respectively. In phase 3, the CAD system detected Barrett's neoplasia with sensitivity, specificity, negative predictive value, and accuracy of 93.8%, 90.7%, 95.1%, and 92.0%, respectively, compared with the endoscopists' performance of 63.5%, 77.9%, 74.2%, and 71.8%, respectively (P < .05 in all parameters). The CAD system localized neoplastic lesions with accuracy, mean precision, and mean intersection over union of 100%, 0.62, and 0.54, respectively, when compared with at least 1 of the expert markings. The processing speed of the CAD detection and localization were 5 ms/image and 33 ms/image, respectively. CONCLUSION To our knowledge, this is the first study describing external (multicenter) validation of AI algorithms for the detection of Barrett's neoplasia on real-time endoscopic videos. The CAD system in this study significantly outperformed nonexpert endoscopists on real-time video-based assessment, achieving >90% sensitivity for neoplasia detection. This result needs to be validated during real-time endoscopic assessment.
Collapse
Affiliation(s)
| | - Masahiro Saiko
- Biometrics Research Laboratories, NEC Corporation, Kawasaki, Japan
| | - Naoto Maeda
- Medical AI Research Department, NEC Corporation, Tokyo, Japan
| | - Ejaz Hossain
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | | | | | - Adolfo Parra-Blanco
- Nottingham Digestive Diseases Biomedical Research Centre, and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Emmanuel Coron
- Centre Hospitalier Universitaire and Faculté de Médecine de Nantes, Nantes, France
| | | | | |
Collapse
|
23
|
Scheppach MW, Rauber D, Stallhofer J, Muzalyova A, Otten V, Manzeneder C, Schwamberger T, Wanzl J, Schlottmann J, Tadic V, Probst A, Schnoy E, Römmele C, Fleischmann C, Meinikheim M, Miller S, Märkl B, Stallmach A, Palm C, Messmann H, Ebigbo A. Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm. Gastrointest Endosc 2023; 97:911-916. [PMID: 36646146 DOI: 10.1016/j.gie.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Celiac disease with its endoscopic manifestation of villous atrophy (VA) is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of VA at routine EGD may improve diagnostic performance. METHODS A dataset of 858 endoscopic images of 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet18 deep learning model to detect VA. An external dataset was used to test the algorithm, in addition to 6 fellows and 4 board-certified gastroenterologists. Fellows could consult the AI algorithm's result during the test. From their consultation distribution, a stratification of test images into "easy" and "difficult" was performed and used for classified performance measurement. RESULTS External validation of the AI algorithm yielded values of 90%, 76%, and 84% for sensitivity, specificity, and accuracy, respectively. Fellows scored corresponding values of 63%, 72%, and 67% and experts scored 72%, 69%, and 71%, respectively. AI consultation significantly improved all trainee performance statistics. Although fellows and experts showed significantly lower performance for difficult images, the performance of the AI algorithm was stable. CONCLUSIONS In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of VA on endoscopic still images. AI decision support significantly improved the performance of nonexpert endoscopists. The stable performance on difficult images suggests a further positive add-on effect in challenging cases.
Collapse
Affiliation(s)
- Markus W Scheppach
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany; Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Anna Muzalyova
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Vera Otten
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Carolin Manzeneder
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Tanja Schwamberger
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Julia Wanzl
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Jakob Schlottmann
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Vidan Tadic
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Andreas Probst
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Elisabeth Schnoy
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Carola Fleischmann
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Michael Meinikheim
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Silvia Miller
- Department of Pathology, University Hospital of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Department of Pathology, University Hospital of Augsburg, Augsburg, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Christoph Palm
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany; Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Helmut Messmann
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| |
Collapse
|
24
|
Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett's esophagus-related neoplasia. Clin Endosc 2023; 56:14-22. [PMID: 36646423 PMCID: PMC9902686 DOI: 10.5946/ce.2022.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/25/2022] [Indexed: 01/18/2023] Open
Abstract
Barrett's esophagus is associated with an increased risk of adenocarcinoma. Thorough screening during endoscopic surveillance is crucial to improve patient prognosis. Detecting and characterizing dysplastic or neoplastic Barrett's esophagus during routine endoscopy are challenging, even for expert endoscopists. Artificial intelligence-based clinical decision support systems have been developed to provide additional assistance to physicians performing diagnostic and therapeutic gastrointestinal endoscopy. In this article, we review the current role of artificial intelligence in the management of Barrett's esophagus and elaborate on potential artificial intelligence in the future.
Collapse
Affiliation(s)
- Michael Meinikheim
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany,Correspondence: Michael Meinikheim Department of Gastroenterology, University Hospital of Augsburg, Stenglinstr. 2, D-86156 Augsburg, Germany E-mail:
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| |
Collapse
|
25
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
26
|
Ali S. Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions. NPJ Digit Med 2022; 5:184. [PMID: 36539473 PMCID: PMC9767933 DOI: 10.1038/s41746-022-00733-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Recent developments in deep learning have enabled data-driven algorithms that can reach human-level performance and beyond. The development and deployment of medical image analysis methods have several challenges, including data heterogeneity due to population diversity and different device manufacturers. In addition, more input from experts is required for a reliable method development process. While the exponential growth in clinical imaging data has enabled deep learning to flourish, data heterogeneity, multi-modality, and rare or inconspicuous disease cases still need to be explored. Endoscopy being highly operator-dependent with grim clinical outcomes in some disease cases, reliable and accurate automated system guidance can improve patient care. Most designed methods must be more generalisable to the unseen target data, patient population variability, and variable disease appearances. The paper reviews recent works on endoscopic image analysis with artificial intelligence (AI) and emphasises the current unmatched needs in this field. Finally, it outlines the future directions for clinically relevant complex AI solutions to improve patient outcomes.
Collapse
Affiliation(s)
- Sharib Ali
- School of Computing, University of Leeds, LS2 9JT, Leeds, UK.
| |
Collapse
|
27
|
Islam MM, Poly TN, Walther BA, Yeh CY, Seyed-Abdul S, Li YC(J, Lin MC. Deep Learning for the Diagnosis of Esophageal Cancer in Endoscopic Images: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14235996. [PMID: 36497480 PMCID: PMC9736434 DOI: 10.3390/cancers14235996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer, one of the most common cancers with a poor prognosis, is the sixth leading cause of cancer-related mortality worldwide. Early and accurate diagnosis of esophageal cancer, thus, plays a vital role in choosing the appropriate treatment plan for patients and increasing their survival rate. However, an accurate diagnosis of esophageal cancer requires substantial expertise and experience. Nowadays, the deep learning (DL) model for the diagnosis of esophageal cancer has shown promising performance. Therefore, we conducted an updated meta-analysis to determine the diagnostic accuracy of the DL model for the diagnosis of esophageal cancer. A search of PubMed, EMBASE, Scopus, and Web of Science, between 1 January 2012 and 1 August 2022, was conducted to identify potential studies evaluating the diagnostic performance of the DL model for esophageal cancer using endoscopic images. The study was performed in accordance with PRISMA guidelines. Two reviewers independently assessed potential studies for inclusion and extracted data from retrieved studies. Methodological quality was assessed by using the QUADAS-2 guidelines. The pooled accuracy, sensitivity, specificity, positive and negative predictive value, and the area under the receiver operating curve (AUROC) were calculated using a random effect model. A total of 28 potential studies involving a total of 703,006 images were included. The pooled accuracy, sensitivity, specificity, and positive and negative predictive value of DL for the diagnosis of esophageal cancer were 92.90%, 93.80%, 91.73%, 93.62%, and 91.97%, respectively. The pooled AUROC of DL for the diagnosis of esophageal cancer was 0.96. Furthermore, there was no publication bias among the studies. The findings of our study show that the DL model has great potential to accurately and quickly diagnose esophageal cancer. However, most studies developed their model using endoscopic data from the Asian population. Therefore, we recommend further validation through studies of other populations as well.
Collapse
Affiliation(s)
- Md. Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Bruno Andreas Walther
- Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Chih-Yang Yeh
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shabbir Seyed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chuan (Jack) Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei 116, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
28
|
Ebigbo A, Mendel R, Scheppach MW, Probst A, Shahidi N, Prinz F, Fleischmann C, Römmele C, Goelder SK, Braun G, Rauber D, Rueckert T, de Souza LA, Papa J, Byrne M, Palm C, Messmann H. Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm. Gut 2022; 71:2388-2390. [PMID: 36109151 PMCID: PMC9664130 DOI: 10.1136/gutjnl-2021-326470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/29/2022] [Indexed: 01/26/2023]
Abstract
In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.
Collapse
Affiliation(s)
- Alanna Ebigbo
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Robert Mendel
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Markus W Scheppach
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Andreas Probst
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Neal Shahidi
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Friederike Prinz
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Carola Fleischmann
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | | | - Georg Braun
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tobias Rueckert
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Luis A de Souza
- Department of Computing, Federal University of São Carlos, São Carlos, Brazil
| | - Joao Papa
- Department of Computing, São Paulo State University, Botucatu, Brazil
| | - Michael Byrne
- Vancouver General Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christoph Palm
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Helmut Messmann
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| |
Collapse
|
29
|
Knabe M, Welsch L, Blasberg T, Müller E, Heilani M, Bergen C, Herrmann E, May A. Artificial intelligence-assisted staging in Barrett's carcinoma. Endoscopy 2022; 54:1191-1197. [PMID: 35354219 DOI: 10.1055/a-1811-9407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Artificial intelligence (AI) is increasingly being used to detect neoplasia and interpret endoscopic images. The T stage of Barrett's carcinoma is a major criterion for subsequent treatment decisions. Although endoscopic ultrasound is still the standard for preoperative staging, its value is debatable. Novel tools are required to assist with staging, to optimize results. This study aimed to investigate the accuracy of T stage of Barrett's carcinoma by an AI system based on endoscopic images. METHODS 1020 images (minimum one per patient, maximum three) from 577 patients with Barrett's adenocarcinoma were used for training and internal validation of a convolutional neural network. In all, 821 images were selected to train the model and 199 images were used for validation. RESULTS AI recognized Barrett's mucosa without neoplasia with an accuracy of 85 % (95 %CI 82.7-87.1). Mucosal cancer was identified with a sensitivity of 72 % (95 %CI 67.5-76.4), specificity of 64 % (95 %CI 60.0-68.4), and accuracy of 68 % (95 %CI 64.6-70.7). The sensitivity, specificity, and accuracy for early Barrett's neoplasia < T1b sm2 were 57 % (95 %CI 51.8-61.0), 77 % (95 %CI 72.3-80.2), and 67 % (95 %CI 63.4-69.5), respectively. More advanced stages (T3/T4) were diagnosed correctly with a sensitivity of 71 % (95 %CI 65.1-76.7) and specificity of 73 % (95 %CI 69.7-76.5). The overall accuracy was 73 % (95 %CI 69.6-75.5). CONCLUSIONS The AI system identified esophageal cancer with high accuracy, suggesting its potential to assist endoscopists in clinical decision making.
Collapse
Affiliation(s)
- Mate Knabe
- Department of Gastroenterology, Frankfurt University Hospital, Frankfurt, Germany
| | - Lukas Welsch
- Department of Gastroenterology, Frankfurt University Hospital, Frankfurt, Germany
| | - Tobias Blasberg
- Department of Gastroenterology, Sana Klinikum GmbH Offenbach, Offenbach, Germany
| | - Elisa Müller
- Department of Gastroenterology, Frankfurt University Hospital, Frankfurt, Germany
| | - Myriam Heilani
- Department of Gastroenterology, Frankfurt University Hospital, Frankfurt, Germany
| | - Christoph Bergen
- HMS Analytical Software GmbH, HMS Analytical Software, Heidelberg, Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, Goethe University of Frankfurt, Frankfurt, Germany
| | - Andrea May
- Department of Medicine I, Asklepios Paulinen Klinik Wiesbaden, Wiesbaden, Germany
| |
Collapse
|
30
|
Fang YJ, Mukundan A, Tsao YM, Huang CW, Wang HC. Identification of Early Esophageal Cancer by Semantic Segmentation. J Pers Med 2022; 12:1204. [PMID: 35893299 PMCID: PMC9331549 DOI: 10.3390/jpm12081204] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Early detection of esophageal cancer has always been difficult, thereby reducing the overall five-year survival rate of patients. In this study, semantic segmentation was used to predict and label esophageal cancer in its early stages. U-Net was used as the basic artificial neural network along with Resnet to extract feature maps that will classify and predict the location of esophageal cancer. A total of 75 white-light images (WLI) and 90 narrow-band images (NBI) were used. These images were classified into three categories: normal, dysplasia, and squamous cell carcinoma. After labeling, the data were divided into a training set, verification set, and test set. The training set was approved by the encoder-decoder model to train the prediction model. Research results show that the average time of 111 ms is used to predict each image in the test set, and the evaluation method is calculated in pixel units. Sensitivity is measured based on the severity of the cancer. In addition, NBI has higher accuracy of 84.724% when compared with the 82.377% accuracy rate of WLI, thereby making it a suitable method to detect esophageal cancer using the algorithm developed in this study.
Collapse
Affiliation(s)
- Yu-Jen Fang
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, No. 579, Sec. 2, Yunlin Rd., Dou-Liu 64041, Taiwan;
- Department of Internal Medicine, National Taiwan University College of Medicine, No. 1 Jen Ai Rd. Sec. 1, Taipei 10051, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; (A.M.); (Y.-M.T.)
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; (A.M.); (Y.-M.T.)
- Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung 80661, Taiwan
| | - Chien-Wei Huang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya Dist., Kaohsiung 80284, Taiwan
- Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu Township, Pingtung 90741, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; (A.M.); (Y.-M.T.)
| |
Collapse
|
31
|
Lei S, Liu H. Deep Learning Dual Neural Networks in the Construction of Learning Models for Online Courses in Piano Education. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4408288. [PMID: 35875728 PMCID: PMC9300362 DOI: 10.1155/2022/4408288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
The use of deep learning (DL) and artificial intelligence (AI) in teaching children piano lessons promotes modern piano instruction and enhances the overall quality of education. To begin, a more thorough explanation of the teaching environment and the intelligent piano's features is provided. Then, a method for detecting the onset of a piano note using a Dual Neural Network (DNN) is proposed. By transforming the original time-domain waveform of the piano music signal into a frequency distribution that changes with time, the network can analyze the input signal's time-frequency. Finally, the intelligent piano teaching method combines deep learning with artificial intelligence (AI) to produce the best possible results for students learning the piano instrument. For children and their parents alike, it is a favorite, and it significantly impacts their interests. The proposed model has a 94% overall accuracy rate.
Collapse
Affiliation(s)
- Shijun Lei
- Guangzhou College of Technology and Business, Guangzhou, Guangdong 510000, China
| | - Huiming Liu
- College of Music and Dance, Guangzhou University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
32
|
Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, Tang Y, Li B, Su S. Artificial Intelligence-Assisted Endoscopic Diagnosis of Early Upper Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:855175. [PMID: 35756602 PMCID: PMC9229174 DOI: 10.3389/fonc.2022.855175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of this study was to assess the diagnostic ability of artificial intelligence (AI) in the detection of early upper gastrointestinal cancer (EUGIC) using endoscopic images. Methods Databases were searched for studies on AI-assisted diagnosis of EUGIC using endoscopic images. The pooled area under the curve (AUC), sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) with 95% confidence interval (CI) were calculated. Results Overall, 34 studies were included in our final analysis. Among the 17 image-based studies investigating early esophageal cancer (EEC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.95 (95% CI, 0.95–0.96), 0.95 (95% CI, 0.94–0.95), 10.76 (95% CI, 7.33–15.79), 0.07 (95% CI, 0.04–0.11), and 173.93 (95% CI, 81.79–369.83), respectively. Among the seven patient-based studies investigating EEC detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.94 (95% CI, 0.91–0.96), 0.90 (95% CI, 0.88–0.92), 6.14 (95% CI, 2.06–18.30), 0.07 (95% CI, 0.04–0.11), and 69.13 (95% CI, 14.73–324.45), respectively. Among the 15 image-based studies investigating early gastric cancer (EGC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.94, 0.87 (95% CI, 0.87–0.88), 0.88 (95% CI, 0.87–0.88), 7.20 (95% CI, 4.32–12.00), 0.14 (95% CI, 0.09–0.23), and 48.77 (95% CI, 24.98–95.19), respectively. Conclusions On the basis of our meta-analysis, AI exhibited high accuracy in diagnosis of EUGIC. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier PROSPERO (CRD42021270443).
Collapse
Affiliation(s)
- De Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengjia Zhou
- Department of Ultrasound, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Liu
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xinchen Luo
- Department of Gastroenterology, Zigong Third People's Hospital, Zigong, China
| | - Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Huang Z, Xiao J, Wang X, Li Z, Guo N, Hu Y, Li X, Wang X. Clinical Evaluation of the Automatic Coronary Artery Disease Reporting and Data System (CAD-RADS) in Coronary Computed Tomography Angiography Using Convolutional Neural Networks. Acad Radiol 2022; 30:698-706. [PMID: 35753936 DOI: 10.1016/j.acra.2022.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES The coronary artery disease reporting and data system (CAD-RADS™) was recently introduced to standardise reporting. We aimed to evaluate the utility of an automatic postprocessing and reporting system based on CAD-RADS™ in suspected coronary artery disease (CAD) patients. MATERIALS AND METHODS Clinical evaluation was performed in 346 patients who underwent coronary computed tomography angiography (CCTA). We compared deep learning (DL)-based CCTA with human readers for evaluation of CAD-RADS™ with commercially-available automated segmentation and manual postprocessing in a retrospective validation cohort. RESULTS Compared with invasive coronary angiography, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the DL model for diagnosis of CAD were 79.02%, 86.52%, 89.50%, 73.94%, and 82.08%, respectively. There was no significant difference between the DL-based and the reader-based CAD-RADS™ grading of CCTA results. Consistency testing showed that the Kappa value between the model and the readers was 0.775 (95% confidence interval [CI]: 0.728-0.823, p < 0.001), 0.802 (95% CI: 0.756-0.847, p < 0.001), and 0.796 (95% CI: 0.750-0.843, p < 0.001), respectively. This system reduces the time taken from 14.97 ± 1.80 min to 5.02 ± 0.8 min (p < 0.001). CONCLUSION The standardised reporting of DL-based CAD-RADS™ in CCTA can accurately and rapidly evaluate suspected CAD patients, and has good consistency with grading by radiologists.
Collapse
Affiliation(s)
- Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Xiao
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuoqin Li
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Guo
- Shukun (Beijing) Technology Co., Ltd., Jinhui Building, Qiyang Road, 100102 Beijing, China
| | - Yun Hu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Tan JL, Chinnaratha MA, Woodman R, Martin R, Chen HT, Carneiro G, Singh R. Diagnostic Accuracy of Artificial Intelligence (AI) to Detect Early Neoplasia in Barrett's Esophagus: A Non-comparative Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:890720. [PMID: 35814747 PMCID: PMC9258946 DOI: 10.3389/fmed.2022.890720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIMS Artificial Intelligence (AI) is rapidly evolving in gastrointestinal (GI) endoscopy. We undertook a systematic review and meta-analysis to assess the performance of AI at detecting early Barrett's neoplasia. METHODS We searched Medline, EMBASE and Cochrane Central Register of controlled trials database from inception to the 28th Jan 2022 to identify studies on the detection of early Barrett's neoplasia using AI. Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies - 2 (QUADAS-2). A random-effects model was used to calculate pooled sensitivity, specificity, and diagnostics odds ratio (DOR). Forest plots and a summary of the receiving operating characteristics (SROC) curves displayed the outcomes. Heterogeneity was determined by I 2, Tau2 statistics and p-value. The funnel plots and Deek's test were used to assess publication bias. RESULTS Twelve studies comprising of 1,361 patients (utilizing 532,328 images on which the various AI models were trained) were used. The SROC was 0.94 (95% CI: 0.92-0.96). Pooled sensitivity, specificity and diagnostic odds ratio were 90.3% (95% CI: 87.1-92.7%), 84.4% (95% CI: 80.2-87.9%) and 48.1 (95% CI: 28.4-81.5), respectively. Subgroup analysis of AI models trained only on white light endoscopy was similar with pooled sensitivity and specificity of 91.2% (95% CI: 85.7-94.7%) and 85.1% (95% CI: 81.6%-88.1%), respectively. CONCLUSIONS AI is highly accurate at detecting early Barrett's neoplasia and validated for patients with at least high-grade dysplasia and above. Further well-designed prospective randomized controlled studies of all histopathological subtypes of early Barrett's neoplasia are needed to confirm these findings further.
Collapse
Affiliation(s)
- Jin Lin Tan
- Department of Gastroenterology and Hepatology, Lyell McEwin Hospital, SA Health, Elizabeth Vale, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mohamed Asif Chinnaratha
- Department of Gastroenterology and Hepatology, Lyell McEwin Hospital, SA Health, Elizabeth Vale, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Richard Woodman
- Flinders Centre for Epidemiology and Biostatistics, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Rory Martin
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA, Australia
| | - Hsiang-Ting Chen
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA, Australia
| | - Gustavo Carneiro
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA, Australia
| | - Rajvinder Singh
- Department of Gastroenterology and Hepatology, Lyell McEwin Hospital, SA Health, Elizabeth Vale, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
Zhang P, She Y, Gao J, Feng Z, Tan Q, Min X, Xu S. Development of a Deep Learning System to Detect Esophageal Cancer by Barium Esophagram. Front Oncol 2022; 12:766243. [PMID: 35800062 PMCID: PMC9253273 DOI: 10.3389/fonc.2022.766243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Implementation of deep learning systems (DLSs) for analysis of barium esophagram, a cost-effective diagnostic test for esophageal cancer detection, is expected to reduce the burden to radiologists while ensuring the accuracy of diagnosis. Objective To develop an automated DLS to detect esophageal cancer on barium esophagram. Methods This was a retrospective study using deep learning for esophageal cancer detection. A two-stage DLS (including a Selection network and a Classification network) was developed. Five datasets based on barium esophagram were used for stepwise training, validation, and testing of the DLS. Datasets 1 and 2 were used to respectively train and test the Selection network, while Datasets 3, 4, and 5 were respectively used to train, validate, and test the Classification network. Finally, a positioning box with a probability value was outputted by the DLS. A region of interest delineated by experienced radiologists was selected as the ground truth to evaluate the detection and classification efficiency of the DLS. Standard machine learning metrics (accuracy, recall, precision, sensitivity, and specificity) were calculated. A comparison with the conventional visual inspection approach was also conducted. Results The accuracy, sensitivity, and specificity of our DLS in detecting esophageal cancer were 90.3%, 92.5%, and 88.7%, respectively. With the aid of DLS, the radiologists’ interpretation time was significantly shortened (Reader1, 45.7 s vs. 72.2 s without DLS aid; Reader2, 54.1 s vs. 108.7 s without DLS aid). Respective diagnostic efficiencies for Reader1 with and without DLS aid were 96.8% vs. 89.3% for accuracy, 97.5% vs. 87.5% for sensitivity, 96.2% vs. 90.6% for specificity, and 0.969 vs. 0.890 for AUC. Respective diagnostic efficiencies for Reader2 with and without DLS aid were 95.7% vs. 88.2% for accuracy, 92.5% vs. 77.5% for sensitivity, 98.1% vs. 96.2% for specificity, and 0.953 vs. 0.869 for AUC. Of note, the positioning boxes outputted by the DLS almost overlapped with those manually labeled by the radiologists on Dataset 5. Conclusions The proposed two-stage DLS for detecting esophageal cancer on barium esophagram could effectively shorten the interpretation time with an excellent diagnostic performance. It may well assist radiologists in clinical practice to reduce their burden.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei She
- College of Computer Science, South-Central University for Nationalities, Wuhan, China
| | - Junfeng Gao
- College of Biomedical Engineering, South-Central of University for Nationalities, Wuhan, China
| | - Zhaoyan Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghai Tan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shengzhou Xu, ; Xiangde Min,
| | - Shengzhou Xu
- College of Computer Science, South-Central University for Nationalities, Wuhan, China
- *Correspondence: Shengzhou Xu, ; Xiangde Min,
| |
Collapse
|
36
|
Artificial Intelligence in the Management of Barrett’s Esophagus and Early Esophageal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14081918. [PMID: 35454824 PMCID: PMC9028107 DOI: 10.3390/cancers14081918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Esophageal adenocarcinoma is increasing in incidence and is the most common subtype of esophageal cancer in Western societies. AI systems are currently under development and validation in many fields of gas-troenterology. Abstract Esophageal adenocarcinoma is increasing in incidence and is the most common subtype of esophageal cancer in Western societies. The stepwise progression of Barrett´s metaplasia to high-grade dysplasia and invasive adenocarcinoma provides an opportunity for screening and surveillance. There are important unresolved issues, which include (i) refining the definition of the screening population in order to avoid unnecessary invasive diagnostics, (ii) a more precise prediction of the (very heterogeneous) individual progression risk from metaplasia to invasive cancer in order to better tailor surveillance recommendations, (iii) improvement of the quality of endoscopy in order to reduce the high miss rate for early neoplastic lesions, and (iv) support for the diagnosis of tumor infiltration depth in order to guide treatment decisions. Artificial intelligence (AI) systems might be useful as a support to better solve the above-mentioned issues.
Collapse
|
37
|
Frazzoni L, Arribas J, Antonelli G, Libanio D, Ebigbo A, van der Sommen F, de Groof AJ, Fukuda H, Ohmori M, Ishihara R, Wu L, Yu H, Mori Y, Repici A, Bergman JJGHM, Sharma P, Messmann H, Hassan C, Fuccio L, Dinis-Ribeiro M. Endoscopists' diagnostic accuracy in detecting upper gastrointestinal neoplasia in the framework of artificial intelligence studies. Endoscopy 2022; 54:403-411. [PMID: 33951743 DOI: 10.1055/a-1500-3730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Estimates on miss rates for upper gastrointestinal neoplasia (UGIN) rely on registry data or old studies. Quality assurance programs for upper GI endoscopy are not fully established owing to the lack of infrastructure to measure endoscopists' competence. We aimed to assess endoscopists' accuracy for the recognition of UGIN exploiting the framework of artificial intelligence (AI) validation studies. METHODS Literature searches of databases (PubMed/MEDLINE, EMBASE, Scopus) up to August 2020 were performed to identify articles evaluating the accuracy of individual endoscopists for the recognition of UGIN within studies validating AI against a histologically verified expert-annotated ground-truth. The main outcomes were endoscopists' pooled sensitivity, specificity, positive and negative predictive value (PPV/NPV), and area under the curve (AUC) for all UGIN, for esophageal squamous cell neoplasia (ESCN), Barrett esophagus-related neoplasia (BERN), and gastric adenocarcinoma (GAC). RESULTS Seven studies (2 ESCN, 3 BERN, 1 GAC, 1 UGIN overall) with 122 endoscopists were included. The pooled endoscopists' sensitivity and specificity for UGIN were 82 % (95 % confidence interval [CI] 80 %-84 %) and 79 % (95 %CI 76 %-81 %), respectively. Endoscopists' accuracy was higher for GAC detection (AUC 0.95 [95 %CI 0.93-0.98]) than for ESCN (AUC 0.90 [95 %CI 0.88-0.92]) and BERN detection (AUC 0.86 [95 %CI 0.84-0.88]). Sensitivity was higher for Eastern vs. Western endoscopists (87 % [95 %CI 84 %-89 %] vs. 75 % [95 %CI 72 %-78 %]), and for expert vs. non-expert endoscopists (85 % [95 %CI 83 %-87 %] vs. 71 % [95 %CI 67 %-75 %]). CONCLUSION We show suboptimal accuracy of endoscopists for the recognition of UGIN even within a framework that included a higher prevalence and disease awareness. Future AI validation studies represent a framework to assess endoscopist competence.
Collapse
Affiliation(s)
- Leonardo Frazzoni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Julia Arribas
- CIDES/CINTESIS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Giulio Antonelli
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Diogo Libanio
- CIDES/CINTESIS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alanna Ebigbo
- III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany
| | - Fons van der Sommen
- Department of Electrical Engineering, VCA group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert Jeroen de Groof
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hiromu Fukuda
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayasu Ohmori
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Ryu Ishihara
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Institute for Gastroenterology and Hepatology, Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Institute for Gastroenterology and Hepatology, Wuhan University, Wuhan, China
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Alessandro Repici
- Digestive Endoscopy Unit, Humanitas Research Hospital - IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Helmut Messmann
- III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany
| | - Cesare Hassan
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Lorenzo Fuccio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Mário Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| |
Collapse
|
38
|
Sharma P, Hassan C. Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia. Gastroenterology 2022; 162:1056-1066. [PMID: 34902362 DOI: 10.1053/j.gastro.2021.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
Abstract
Upper gastrointestinal (GI) neoplasia account for 35% of GI cancers and 1.5 million cancer-related deaths every year. Despite its efficacy in preventing cancer mortality, diagnostic upper GI endoscopy is affected by a substantial miss rate of neoplastic lesions due to failure to recognize a visible lesion or imperfect navigation. This may be offset by the real-time application of artificial intelligence (AI) for detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of upper GI neoplasia. Stand-alone performance of CADe for esophageal squamous cell neoplasia, Barrett's esophagus-related neoplasia, and gastric cancer showed promising accuracy, sensitivity ranging between 83% and 93%. However, incorporation of CADe/CADx in clinical practice depends on several factors, such as possible bias in the training or validation phases of these algorithms, its interaction with human endoscopists, and clinical implications of false-positive results. The aim of this review is to guide the clinician across the multiple steps of AI development in clinical practice.
Collapse
Affiliation(s)
- Prateek Sharma
- University of Kansas School of Medicine, Kansas City, Missouri; Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Cesare Hassan
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center-IRCCS, Endoscopy Unit, Rozzano, Italy.
| |
Collapse
|
39
|
Spadaccini M, Vespa E, Chandrasekar VT, Desai M, Patel HK, Maselli R, Fugazza A, Carrara S, Anderloni A, Franchellucci G, De Marco A, Hassan C, Bhandari P, Sharma P, Repici A. Advanced imaging and artificial intelligence for Barrett's esophagus: What we should and soon will do. World J Gastroenterol 2022; 28:1113-1122. [PMID: 35431503 PMCID: PMC8985480 DOI: 10.3748/wjg.v28.i11.1113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
Barrett's esophagus (BE) is a well-established risk factor for esophageal adenocarcinoma. It is recommended that patients have regular endoscopic surveillance, with the ultimate goal of detecting early-stage neoplastic lesions before they can progress to invasive carcinoma. Detection of both dysplasia or early adenocarcinoma permits curative endoscopic treatments, and with this aim, thorough endoscopic assessment is crucial and improves outcomes. The burden of missed neoplasia in BE is still far from being negligible, likely due to inappropriate endoscopic surveillance. Over the last two decades, advanced imaging techniques, moving from traditional dye-spray chromoendoscopy to more practical virtual chromoendoscopy technologies, have been introduced with the aim to enhance neoplasia detection in BE. As witnessed in other fields, artificial intelligence (AI) has revolutionized the field of diagnostic endoscopy and is set to cover a pivotal role in BE as well. The aim of this commentary is to comprehensively summarize present evidence, recent research advances, and future perspectives regarding advanced imaging technology and AI in BE; the combination of computer-aided diagnosis to a widespread adoption of advanced imaging technologies is eagerly awaited. It will also provide a useful step-by-step approach for performing high-quality endoscopy in BE, in order to increase the diagnostic yield of endoscopy in clinical practice.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Edoardo Vespa
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | | | - Madhav Desai
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center, Kansas City, MO 66045, United States
| | - Harsh K Patel
- Department of Internal Medicine, Ochsner Clinic Foundation, New Orleans, LA 70124, United States
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Alessandro Fugazza
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
| | - Silvia Carrara
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
| | - Andrea Anderloni
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
| | - Gianluca Franchellucci
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Alessandro De Marco
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Cesare Hassan
- Endoscopy Unit, Nuovo Regina Margherita Hospital, Roma 00153, Italy
| | - Pradeep Bhandari
- Department of Gastroenterology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO6 3LY, United Kingdom
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center, Kansas City, MO 66045, United States
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| |
Collapse
|
40
|
Schmitz R, Werner R, Repici A, Bisschops R, Meining A, Zornow M, Messmann H, Hassan C, Sharma P, Rösch T. Artificial intelligence in GI endoscopy: stumbling blocks, gold standards and the role of endoscopy societies. Gut 2022; 71:451-454. [PMID: 33479051 DOI: 10.1136/gutjnl-2020-323115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Rüdiger Schmitz
- Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rene Werner
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Repici
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Raf Bisschops
- Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Alexander Meining
- Department of Gastroenterology, University of Würzburg, Würzburg, Germany
| | - Michael Zornow
- Chair for Public and European Law, University of Göttingen, Göttingen, Germany
| | - Helmut Messmann
- Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Cesare Hassan
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Prateek Sharma
- Division of Gastroenterology and Hepatology, Veterans Affairs Medical Center and University of Kansas, Lawrence, Kansas, USA
| | - Thomas Rösch
- Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, Sharma P, Savarino E, de Bortoli N. Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. Aliment Pharmacol Ther 2022; 55:528-540. [PMID: 35098562 PMCID: PMC9305819 DOI: 10.1111/apt.16778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). AIM We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. METHODS We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. RESULTS For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. CONCLUSIONS AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Brigida Barberio
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
- Department of Medical ScienceUniversity of FerraraFerraraItaly
| | - Matteo Martinato
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas UniversityVia Rita Levi Montalcini 420072 Pieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospitalvia Manzoni 5620089 Rozzano, MilanItaly
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical CenterKansas CityMissouriUSA
| | - Edoardo Savarino
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Nicola de Bortoli
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
42
|
Zhuang H, Bao A, Tan Y, Wang H, Xie Q, Qiu M, Xiong W, Liao F. Application and prospect of artificial intelligence in digestive endoscopy. Expert Rev Gastroenterol Hepatol 2022; 16:21-31. [PMID: 34937459 DOI: 10.1080/17474124.2022.2020646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the progress of science and technology, artificial intelligence represented by deep learning has gradually begun to be applied in the medical field. Artificial intelligence has been applied to benign gastrointestinal lesions, tumors, early cancer, inflammatory bowel disease, gallbladder, pancreas, and other diseases. This review summarizes the latest research results on artificial intelligence in digestive endoscopy and discusses the prospect of artificial intelligence in digestive system diseases. AREAS COVERED We retrieved relevant documents on artificial intelligence in digestive tract diseases from PubMed and Medline. This review elaborates on the knowledge of computer-aided diagnosis in digestive endoscopy. EXPERT OPINION Artificial intelligence significantly improves diagnostic accuracy, reduces physicians' workload, and provides a shred of evidence for clinical diagnosis and treatment. Shortly, artificial intelligence will have high application value in the field of medicine.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Tan
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanyu Wang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meiqi Qiu
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanli Xiong
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
43
|
Qin K, Li J, Fang Y, Xu Y, Wu J, Zhang H, Li H, Liu S, Li Q. Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and meta-analysis. Surg Endosc 2022; 36:16-31. [PMID: 34426876 PMCID: PMC8741689 DOI: 10.1007/s00464-021-08689-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wireless capsule endoscopy (WCE) is considered to be a powerful instrument for the diagnosis of intestine diseases. Convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist the detection of WCE images. We aimed to perform a systematic review of the current research progress to the CNN application in WCE. METHODS A search in PubMed, SinoMed, and Web of Science was conducted to collect all original publications about CNN implementation in WCE. Assessment of the risk of bias was performed by Quality Assessment of Diagnostic Accuracy Studies-2 risk list. Pooled sensitivity and specificity were calculated by an exact binominal rendition of the bivariate mixed-effects regression model. I2 was used for the evaluation of heterogeneity. RESULTS 16 articles with 23 independent studies were included. CNN application to WCE was divided into detection on erosion/ulcer, gastrointestinal bleeding (GI bleeding), and polyps/cancer. The pooled sensitivity of CNN for erosion/ulcer is 0.96 [95% CI 0.91, 0.98], for GI bleeding is 0.97 (95% CI 0.93-0.99), and for polyps/cancer is 0.97 (95% CI 0.82-0.99). The corresponding specificity of CNN for erosion/ulcer is 0.97 (95% CI 0.93-0.99), for GI bleeding is 1.00 (95% CI 0.99-1.00), and for polyps/cancer is 0.98 (95% CI 0.92-0.99). CONCLUSION Based on our meta-analysis, CNN-dependent diagnosis of erosion/ulcer, GI bleeding, and polyps/cancer approached a high-level performance because of its high sensitivity and specificity. Therefore, future perspective, CNN has the potential to become an important assistant for the diagnosis of WCE.
Collapse
Affiliation(s)
- Kaiwen Qin
- Nanfang Hospital (The First School of Clinical Medicine), Southern Medical University, Guangzhou, Guangdong, China
| | - Jianmin Li
- Guangzhou SiDe MedTech Co.,Ltd, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Yuyuan Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahao Wu
- Guangzhou SiDe MedTech Co.,Ltd, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Haolin Li
- Nanfang Hospital (The First School of Clinical Medicine), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Li Q, Liu BR. Application of artificial intelligence-assisted endoscopic detection of early esophageal cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1389-1395. [DOI: 10.11569/wcjd.v29.i24.1389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, artificial intelligence (AI) combined with endoscopy has made an appearance in the diagnosis of early esophageal cancer (EC) and achieved satisfactory results. Due to the rapid progression and poor prognosis of EC, the early detection and diagnosis of EC are of great value for patient prognosis improvement. AI has been applied in the screening of early EC and has shown advantages; notably, it is more accurate than less-experienced endoscopists. In China, the detection of early EC depends on endoscopist expertise and is inevitably subject to interobserver variability. The excellent imaging recognition ability of AI is very suitable for the diagnosis and recognition of EC, thereby reducing the missed diagnosis and helping physicians to perform endoscopy better. This paper reviews the application and relevant progress of AI in the field of endoscopic detection of early EC (including squamous cell carcinoma and adenocarcinoma), with a focus on diagnostic performance of AI to identify different types of endoscopic images, such as sensitivity and specificity.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
45
|
Bang CS. Artificial Intelligence in the Analysis of Upper Gastrointestinal Disorders. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past, conventional machine learning was applied to analyze tabulated medical data while deep learning was applied to study afflictions such as gastrointestinal disorders. Neural networks were used to detect, classify, and delineate various images of lesions because the local feature selection and optimization of the deep learning model enabled accurate image analysis. With the accumulation of medical records, the evolution of computational power and graphics processing units, and the widespread use of open-source libraries in large-scale machine learning processes, medical artificial intelligence (AI) is overcoming its limitations. While early studies prioritized the automatic diagnosis of cancer or pre-cancerous lesions, the current expanded scope of AI includes benign lesions, quality control, and machine learning analysis of big data. However, the limited commercialization of medical AI and the need to justify its application in each field of research are restricting factors. Modeling assumes that observations follow certain statistical rules, and external validation checks whether assumption is correct or generalizable. Therefore, unused data are essential in the training or internal testing process to validate the performance of the established AI models. This article summarizes the studies on the application of AI models in upper gastrointestinal disorders. The current limitations and the perspectives on future development have also been discussed.
Collapse
|
46
|
Nawab K, Athwani R, Naeem A, Hamayun M, Wazir M. A Review of Applications of Artificial Intelligence in Gastroenterology. Cureus 2021; 13:e19235. [PMID: 34877212 PMCID: PMC8642128 DOI: 10.7759/cureus.19235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is the science that deals with creating 'intelligent machines'. AI has revolutionized medicine because of its application in several fields across medicine like radiology, neurology, ophthalmology, orthopedics and gastroenterology. In this review, we intend to summarize the basics of AI, the application of AI in various gastrointestinal pathologies till date as well as challenges/ problems related to the application of AI in medicine. Literature search using keywords like artificial intelligence, gastroenterology, applications, etc. were used. The literature search was done using Google Scholar, PubMed and ScienceDirect. All the relevant articles were gathered and relevant data were extracted from them. We concluded AI has achieved major feats in the past few decades. It has helped clinicians in diagnosing complex diseases, managing treatments as well as in predicting outcomes, all in all, which helps doctors from all over the globe in dispensing better healthcare services.
Collapse
Affiliation(s)
- Khalid Nawab
- Internal Medicine, Penn State Holy Spirit Hospital, Camp Hill, USA
| | - Ravi Athwani
- Internal Medicine, Penn State Holy Spirit Hospital, Camp Hill, USA
| | - Awais Naeem
- Internal Medicine, Khyber Medical University, Peshawar, PAK
| | | | - Momna Wazir
- Internal Medicine, Hayatabad Medical Complex, Peshawar, PAK
| |
Collapse
|
47
|
Yang F, Tang ZR, Chen J, Tang M, Wang S, Qi W, Yao C, Yu Y, Guo Y, Yu Z. Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning. BMC Med Imaging 2021; 21:189. [PMID: 34879818 PMCID: PMC8653800 DOI: 10.1186/s12880-021-00723-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The objective of this study is to construct a computer aided diagnosis system for normal people and pneumoconiosis using X-raysand deep learning algorithms. MATERIALS AND METHODS 1760 anonymous digital X-ray images of real patients between January 2017 and June 2020 were collected for this experiment. In order to concentrate the feature extraction ability of the model more on the lung region and restrain the influence of external background factors, a two-stage pipeline from coarse to fine was established. First, the U-Net model was used to extract the lung regions on each sides of the collection images. Second, the ResNet-34 model with transfer learning strategy was implemented to learn the image features extracted in the lung region to achieve accurate classification of pneumoconiosis patients and normal people. RESULTS Among the 1760 cases collected, the accuracy and the area under curve of the classification model were 92.46% and 89% respectively. CONCLUSION The successful application of deep learning in the diagnosis of pneumoconiosis further demonstrates the potential of medical artificial intelligence and proves the effectiveness of our proposed algorithm. However, when we further classified pneumoconiosis patients and normal subjects into four categories, we found that the overall accuracy decreased to 70.1%. We will use the CT modality in future studies to provide more details of lung regions.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
| | - Zhi-Ri Tang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Min Tang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Shengchun Wang
- Luzhou Center for Disease Control and Prevention, Luzhou, 646000, Sichuan, China
| | - Wanyin Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Chong Yao
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Yu
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yinan Guo
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zekuan Yu
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China.
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology), Guilin, China.
| |
Collapse
|
48
|
Chang K, Jackson CS, Vega KJ. Barrett's Esophagus: Diagnosis, Management, and Key Updates. Gastroenterol Clin North Am 2021; 50:751-768. [PMID: 34717869 DOI: 10.1016/j.gtc.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Barrett's esophagus (BE) is the precursor lesion for esophageal adenocarcinoma (EAC) development. Unfortunately, BE screening/surveillance has not provided the anticipated EAC reduction benefit. Noninvasive techniques are increasingly available or undergoing testing to screen for BE among those with/without known risk factors, and the use of artificial intelligence platforms to aid endoscopic screening and surveillance will likely become routine, minimizing missed cases or lesions. Management of high-grade dysplasia and intramucosal EAC is clear with endoscopic eradication therapy preferred to surgery. BE with low-grade dysplasia can be managed with removal of visible lesions combined with endoscopic eradication therapy or endoscopic surveillance at present.
Collapse
Affiliation(s)
- Karen Chang
- Department of Internal Medicine, University of California, Riverside School of Medicine, 900 University Avenue, Riverside, CA 92521, USA
| | - Christian S Jackson
- Section of Gastroenterology, Loma Linda VA Healthcare System, 11201 Benton Street, 2A-38, Loma Linda, CA 92357, USA
| | - Kenneth J Vega
- Division of Gastroenterology & Hepatology, Augusta University-Medical College of Georgia, 1120 15th Street, AD-2226, Augusta, GA 30912, USA.
| |
Collapse
|
49
|
Goyal H, Sherazi SAA, Mann R, Gandhi Z, Perisetti A, Aziz M, Chandan S, Kopel J, Tharian B, Sharma N, Thosani N. Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers (Basel) 2021; 13:5494. [PMID: 34771658 PMCID: PMC8582733 DOI: 10.3390/cancers13215494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers are among the leading causes of death worldwide, with over 2.8 million deaths annually. Over the last few decades, advancements in artificial intelligence technologies have led to their application in medicine. The use of artificial intelligence in endoscopic procedures is a significant breakthrough in modern medicine. Currently, the diagnosis of various gastrointestinal cancer relies on the manual interpretation of radiographic images by radiologists and various endoscopic images by endoscopists. This can lead to diagnostic variabilities as it requires concentration and clinical experience in the field. Artificial intelligence using machine or deep learning algorithms can provide automatic and accurate image analysis and thus assist in diagnosis. In the field of gastroenterology, the application of artificial intelligence can be vast from diagnosis, predicting tumor histology, polyp characterization, metastatic potential, prognosis, and treatment response. It can also provide accurate prediction models to determine the need for intervention with computer-aided diagnosis. The number of research studies on artificial intelligence in gastrointestinal cancer has been increasing rapidly over the last decade due to immense interest in the field. This review aims to review the impact, limitations, and future potentials of artificial intelligence in screening, diagnosis, tumor staging, treatment modalities, and prediction models for the prognosis of various gastrointestinal cancers.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18505, USA
| | - Syed A. A. Sherazi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, 1950 W Polk St, Chicago, IL 60612, USA;
| | - Rupinder Mann
- Department of Medicine, Saint Agnes Medical Center, 1303 E. Herndon Ave, Fresno, CA 93720, USA;
| | - Zainab Gandhi
- Department of Medicine, Geisinger Wyoming Valley Medical Center, 1000 E Mountain Dr, Wilkes-Barre, PA 18711, USA;
| | - Abhilash Perisetti
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Muhammad Aziz
- Department of Gastroenterology and Hepatology, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH 43614, USA;
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, CHI Health Creighton University Medical Center, 7500 Mercy Rd, Omaha, NE 68124, USA;
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA;
| | - Benjamin Tharian
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA;
| | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Nirav Thosani
- Division of Gastroenterology, Hepatology & Nutrition, McGovern Medical School, UTHealth, 6410 Fannin, St #1014, Houston, TX 77030, USA;
| |
Collapse
|
50
|
Li N, Jin SZ. Artificial intelligence and early esophageal cancer. Artif Intell Gastrointest Endosc 2021; 2:198-210. [DOI: 10.37126/aige.v2.i5.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The development of esophageal cancer (EC) from early to advanced stage results in a high mortality rate and poor prognosis. Advanced EC not only poses a serious threat to the life and health of patients but also places a heavy economic burden on their families and society. Endoscopy is of great value for the diagnosis of EC, especially in the screening of Barrett’s esophagus and early EC. However, at present, endoscopy has a low diagnostic rate for early tumors. In recent years, artificial intelligence (AI) has made remarkable progress in the diagnosis of digestive system tumors, providing a new model for clinicians to diagnose and treat these tumors. In this review, we aim to provide a comprehensive overview of how AI can help doctors diagnose early EC and precancerous lesions and make clinical decisions based on the predicted results. We analyze and summarize the recent research on AI and early EC. We find that based on deep learning (DL) and convolutional neural network methods, the current computer-aided diagnosis system has gradually developed from in vitro image analysis to real-time detection and diagnosis. Based on powerful computing and DL capabilities, the diagnostic accuracy of AI is close to or better than that of endoscopy specialists. We also analyze the shortcomings in the current AI research and corresponding improvement strategies. We believe that the application of AI-assisted endoscopy in the diagnosis of early EC and precancerous lesions will become possible after the further advancement of AI-related research.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|