1
|
Misawa M, Kudo SE. Current Status of Artificial Intelligence Use in Colonoscopy. Digestion 2024; 106:138-145. [PMID: 39724867 DOI: 10.1159/000543345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Artificial intelligence (AI) has significantly impacted medical imaging, particularly in gastrointestinal endoscopy. Computer-aided detection and diagnosis systems (CADe and CADx) are thought to enhance the quality of colonoscopy procedures. SUMMARY Colonoscopy is essential for colorectal cancer screening but often misses a significant percentage of adenomas. AI-assisted systems employing deep learning offer improved detection and differentiation of colorectal polyps, potentially increasing adenoma detection rates by 8%-10%. The main benefit of CADe is in detecting small adenomas, whereas it has a limited impact on advanced neoplasm detection. Recent advancements include real-time CADe systems and CADx for histopathological predictions, aiding in the differentiation of neoplastic and nonneoplastic lesions. Biases such as the Hawthorne effect and potential overdiagnosis necessitate large-scale clinical trials to validate the long-term benefits of AI. Additionally, novel concepts such as computer-aided quality improvement systems are emerging to address limitations facing current CADe systems. KEY MESSAGES Despite the potential of AI for enhancing colonoscopy outcomes, its effectiveness in reducing colorectal cancer incidence and mortality remains unproven. Further prospective studies are essential to establish the overall utility and clinical benefits of AI in colonoscopy.
Collapse
Affiliation(s)
- Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki, Yokohama, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki, Yokohama, Japan
| |
Collapse
|
2
|
Wang YP, Karmakar R, Mukundan A, Tsao YM, Sung TC, Lu CL, Wang HC. Spectrum aided vision enhancer enhances mucosal visualization by hyperspectral imaging in capsule endoscopy. Sci Rep 2024; 14:22243. [PMID: 39333620 PMCID: PMC11436966 DOI: 10.1038/s41598-024-73387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Narrow-band imaging (NBI) is more efficient in detecting early gastrointestinal cancer than white light imaging (WLI). NBI technology is available only in conventional endoscopy, but unavailable in magnetic-assisted capsule endoscopy (MACE) systems due to MACE's small size and obstacles in image processing issues. MACE is an easy, safe, and convenient tool for both patients and physicians to avoid the disadvantages of conventional endoscopy. Enabling NBI technology in MACE is mandatory. We developed a novel method to improve mucosal visualization using hyperspectral imaging (HSI) known as Spectrum Aided Visual Enhancer (SAVE, Transfer N, Hitspectra Intelligent Technology Co., Kaohsiung, Taiwan). The technique was developed by converting the WLI image captured by MACE to enhance SAVE images. The structural similarity index metric (SSIM) between the WLI MACE images and the enhanced SAVE images was 91%, while the entropy difference between the WLI MACE images and the enhanced SAVE images was only 0.47%. SAVE algorithm can identify the mucosal break on the esophagogastric junction in patients with gastroesophageal reflux disorder. We successfully developed a novel image-enhancing technique, SAVE, in the MACE system, showing close similarity to the NBI from the conventional endoscopy system. The future application of this novel technology in the MACE system can be promising.
Collapse
Affiliation(s)
- Yen-Po Wang
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan
- Institute of Brain Sciences, National Yang Ming Chiao Tung University, 155, Li-Nong St., Sec.2, Peitou, Taipei City, 11217, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan
| | - Te-Chin Sung
- Insight Medical Solutions Inc., No. 1, Lixing 6th Rd., East Dist., Hsinchu City, 300096, Taiwan
| | - Ching-Liang Lu
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan.
- Institute of Brain Sciences, National Yang Ming Chiao Tung University, 155, Li-Nong St., Sec.2, Peitou, Taipei City, 11217, Taiwan.
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan.
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.
- Hitspectra Intelligent Technology Co., Ltd., 8F.11-1, No. 25, Chenggong 2nd Rd., Kaohsiung, 80661, Taiwan.
| |
Collapse
|
3
|
Ziegler J, Dobsch P, Rozema M, Zuber-Jerger I, Weigand K, Reuther S, Müller M, Kandulski A. Multimodal convolutional neural network-based algorithm for real-time detection and differentiation of malignant and inflammatory biliary strictures in cholangioscopy: a proof-of-concept study (with video). Gastrointest Endosc 2024:S0016-5107(24)03479-5. [PMID: 39265745 DOI: 10.1016/j.gie.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND AIMS Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models. METHODS Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions. RESULTS The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly. CONCLUSIONS Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures.
Collapse
Affiliation(s)
| | - Philipp Dobsch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | | | - Ina Zuber-Jerger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine, Gastroenterology, Gastrointestinal Oncology and Diabetology, Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany
| | | | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Lanziano L, Sherf I, Malka D. A 1 × 8 Optical Splitter Based on Polycarbonate Multicore Polymer Optical Fibers. SENSORS (BASEL, SWITZERLAND) 2024; 24:5063. [PMID: 39124110 PMCID: PMC11315036 DOI: 10.3390/s24155063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Visible light communication (VLC) is becoming more relevant due to the accelerated advancement of optical fibers. Polymer optical fiber (POF) technology appears to be a solution to the growing demand for improved transmission efficiency and high-speed data rates in the visible light range. However, the VLC system requires efficient splitters with low power losses to expand the optical energy capability and boost system performance. To solve this issue, we propose an effective 1 × 8 optical splitter based on multicore polycarbonate (PC) POF technology suitable for functioning in the green-light spectrum at a 530 nm wavelength. The new design is based on replacing 23 air-hole layers with PC layers over the fiber length, while each PC layer length is suitable for the light coupling of the operating wavelength, which allows us to set the right size of each PC layer between the closer PC cores. To achieve the best result, the key geometrical parameters were optimized through RSoft Photonics CAD suite software that utilized the beam propagation method (BPM) and analysis using MATLAB script codes for finding the tolerance ranges that can support device fabrication. The results show that after a light propagation of 2 mm, an equally green light at a 530 nm wavelength is divided into eight channels with very low power losses of 0.18 dB. Additionally, the splitter demonstrates a large bandwidth of 25 nm and stability with a tolerance range of ±8 nm around the operated wavelength, ensuring robust performance even under laser drift conditions. Furthermore, the splitter can function with 80% and above of the input signal power around the operated wavelength, indicating high efficiency. Therefore, the proposed device has a great potential to boost sensing detection applications, such as Raman spectroscopic and bioengineering applications, using the green light.
Collapse
Affiliation(s)
| | | | - Dror Malka
- Faculty of Engineering, Holon Institute of Technology (HIT), Holon 5810201, Israel
| |
Collapse
|
5
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
6
|
Spadaccini M, Troya J, Khalaf K, Facciorusso A, Maselli R, Hann A, Repici A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig Liver Dis 2024; 56:1148-1155. [PMID: 38458884 DOI: 10.1016/j.dld.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Colorectal cancer is a significant global health concern, necessitating effective screening strategies to reduce its incidence and mortality rates. Colonoscopy plays a crucial role in the detection and removal of colorectal neoplastic precursors. However, there are limitations and variations in the performance of endoscopists, leading to missed lesions and suboptimal outcomes. The emergence of artificial intelligence (AI) in endoscopy offers promising opportunities to improve the quality and efficacy of screening colonoscopies. In particular, AI applications, including computer-aided detection (CADe) and computer-aided characterization (CADx), have demonstrated the potential to enhance adenoma detection and optical diagnosis accuracy. Additionally, AI-assisted quality control systems aim to standardize the endoscopic examination process. This narrative review provides an overview of AI principles and discusses the current knowledge on AI-assisted endoscopy in the context of screening colonoscopies. It highlights the significant role of AI in improving lesion detection, characterization, and quality assurance during colonoscopy. However, further well-designed studies are needed to validate the clinical impact and cost-effectiveness of AI-assisted colonoscopy before its widespread implementation.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| |
Collapse
|
7
|
Mandarino FV, Danese S, Uraoka T, Parra-Blanco A, Maeda Y, Saito Y, Kudo SE, Bourke MJ, Iacucci M. Precision endoscopy in colorectal polyps' characterization and planning of endoscopic therapy. Dig Endosc 2024; 36:761-777. [PMID: 37988279 DOI: 10.1111/den.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Precision endoscopy in the management of colorectal polyps and early colorectal cancer has emerged as the standard of care. It includes optical characterization of polyps and estimation of submucosal invasion depth of large nonpedunculated colorectal polyps to select the appropriate endoscopic resection modality. Over time, several imaging modalities have been implemented in endoscopic practice to improve optical performance. Among these, image-enhanced endoscopy systems and magnification endoscopy represent now well-established tools. New advanced technologies, such as endocytoscopy and confocal laser endomicroscopy, have recently shown promising results in predicting the histology of colorectal polyps. In recent years, artificial intelligence has continued to enhance endoscopic performance in the characterization of colorectal polyps, overcoming the limitations of other imaging modes. In this review we retrace the path of precision endoscopy, analyzing the yield of various endoscopic imaging techniques in personalizing management of colorectal polyps and early colorectal cancer.
Collapse
Affiliation(s)
- Francesco Vito Mandarino
- Department of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital IRCSS, Milan, Italy
- Department of Gastrointestinal Endoscopy, Westmead Hospital, Sydney, NSW, Australia
| | - Silvio Danese
- Department of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital IRCSS, Milan, Italy
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gumma, Japan
| | - Adolfo Parra-Blanco
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Michael J Bourke
- Department of Gastrointestinal Endoscopy, Westmead Hospital, Sydney, NSW, Australia
| | - Marietta Iacucci
- Department of Gastroenterology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Nijjar GS, Aulakh SK, Singh R, Chandi SK. Emerging Technologies in Endoscopy for Gastrointestinal Neoplasms: A Comprehensive Overview. Cureus 2024; 16:e62946. [PMID: 39044885 PMCID: PMC11265259 DOI: 10.7759/cureus.62946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Gastrointestinal neoplasms are a growing global health concern, requiring prompt identification and treatment. Endoscopic procedures have revolutionized the detection and treatment of gastrointestinal tumors by providing accurate, minimally invasive methods. Early-stage malignancies can be treated with endoscopic excision, leading to improved outcomes and increased survival rates. Precancerous lesions, like adenomatous polyps, can be prevented by removing them, reducing cancer occurrence and death rates. Advanced techniques like chromoendoscopy, narrow-band imaging, and confocal laser endomicroscopy improve the ability to see the mucosa surface and diagnose conditions. Artificial Intelligence (AI) applications in endoscopy can enhance diagnostic accuracy and predict histology outcomes. However, challenges remain in accurately defining lesions and ensuring precise diagnosis and treatment selection. Molecular imaging approaches and therapeutic modalities like photodynamic therapy and endoscopic ultrasonography-guided therapies hold potential but require further study and clinical confirmation. This study examines the future prospects and obstacles in endoscopic procedures for the timely identification and treatment of gastrointestinal cancers. The focus is on developing technology, limits, and prospective effects on clinical practice.
Collapse
Affiliation(s)
| | - Smriti Kaur Aulakh
- Internal Medicine, Sri Guru Ram Das University of Health Science and Research, Amritsar, IND
| | | | | |
Collapse
|
9
|
Lauricella S, Rausa E, Pellegrini I, Ricci MT, Signoroni S, Palassini E, Cavalcoli F, Pasanisi P, Colombo C, Vitellaro M. Current management of familial adenomatous polyposis. Expert Rev Anticancer Ther 2024; 24:363-377. [PMID: 38785081 DOI: 10.1080/14737140.2024.2344649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION APC-associated polyposis is a rare hereditary disorder characterized by the development of multiple adenomas in the digestive tract. Individuals with APC-associated polyposis need to be managed by specialized multidisciplinary teams in dedicated centers. AREAS COVERED The study aimed to review the literature on Familial adenomatous polyposis (FAP) to provide an update on diagnostic and surgical management while focusing on strategies to minimize the risk of desmoid-type fibromatosis, cancer in anorectal remnant, and postoperative complications. FAP individuals require a comprehensive approach that includes diagnosis, surveillance, preventive surgery, and addressing specific extracolonic concerns such as duodenal and desmoid tumors. Management should be personalized considering all factors: genotype, phenotype, and personal needs. Total colectomy and ileo-rectal anastomosis have been shown to yield superior QoL results when compared to Restorative Procto colectomy and ileopouch-anal anastomosis with acceptable oncological risk of developing cancer in the rectal stump if patients rigorously adhere to lifelong endoscopic surveillance. Additionally, a low-inflammatory diet may prevent adenomas and cancer by modulating systemic and tissue inflammatory indices. EXPERT OPINION FAP management requires a multidisciplinary and personalized approach. Integrating genetic advances, innovative surveillance techniques, and emerging therapeutic modalities will contribute to improving outcomes and quality of life for FAP individuals.
Collapse
Affiliation(s)
- Sara Lauricella
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Rausa
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Pellegrini
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Teresa Ricci
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Signoroni
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Palassini
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Cavalcoli
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Nutrition Research and Metabolomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Colombo
- Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Rondonotti E, Bergna IMB, Paggi S, Amato A, Andrealli A, Scardino G, Tamanini G, Lenoci N, Mandelli G, Terreni N, Rocchetto SI, Piagnani A, Di Paolo D, Bina N, Filippi E, Ambrosiani L, Hassan C, Correale L, Radaelli F. White light computer-aided optical diagnosis of diminutive colorectal polyps in routine clinical practice. Endosc Int Open 2024; 12:E676-E683. [PMID: 38774861 PMCID: PMC11108657 DOI: 10.1055/a-2303-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Background and study aims Artificial Intelligence (AI) systems could make the optical diagnosis (OD) of diminutive colorectal polyps (DCPs) more reliable and objective. This study was aimed at prospectively evaluating feasibility and diagnostic performance of AI-standalone and AI-assisted OD of DCPs in a real-life setting by using a white light-based system (GI Genius, Medtronic Co, Minneapolis, Minnesota, United States). Patients and methods Consecutive colonoscopy outpatients with at least one DCP were evaluated by 11 endoscopists (5 experts and 6 non-experts in OD). DCPs were classified in real time by AI (AI-standalone OD) and by the endoscopist with the assistance of AI (AI-assisted OD), with histopathology as the reference standard. Results Of the 480 DCPs, AI provided the outcome "adenoma" or "non-adenoma" in 81.4% (95% confidence interval [CI]: 77.5-84.6). Sensitivity, specificity, positive and negative predictive value, and accuracy of AI-standalone OD were 97.0% (95% CI 94.0-98.6), 38.1% (95% CI 28.9-48.1), 80.1% (95% CI 75.2-84.2), 83.3% (95% CI 69.2-92.0), and 80.5% (95% CI 68.7-82.8%), respectively. Compared with AI-standalone, the specificity of AI-assisted OD was significantly higher (58.9%, 95% CI 49.7-67.5) and a trend toward an increase was observed for other diagnostic performance measures. Overall accuracy and negative predictive value of AI-assisted OD for experts and non-experts were 85.8% (95% CI 80.0-90.4) vs. 80.1% (95% CI 73.6-85.6) and 89.1% (95% CI 75.6-95.9) vs. 80.0% (95% CI 63.9-90.4), respectively. Conclusions Standalone AI is able to provide an OD of adenoma/non-adenoma in more than 80% of DCPs, with a high sensitivity but low specificity. The human-machine interaction improved diagnostic performance, especially when experts were involved.
Collapse
Affiliation(s)
| | - Irene Maria Bambina Bergna
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- University of Milan, Milano, Italy
- Gastroenterology and Digestive Endoscopy Unit, Alessandro Manzoni Hospital, Lecco, Italy
| | - Silvia Paggi
- Gastroenterology Unit, Valduce Hospital, Como, Italy
| | - Arnaldo Amato
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Gastroenterology and Digestive Endoscopy Unit, Alessandro Manzoni Hospital, Lecco, Italy
| | | | | | | | | | | | | | - SImone Rocchetto
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- University of Milan, Milano, Italy
| | - Alessandra Piagnani
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- University of Milan, Milano, Italy
| | | | - Niccolò Bina
- Gastroenterology Unit, Valduce Hospital, Como, Italy
| | | | | | - Cesare Hassan
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Loredana Correale
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | |
Collapse
|
11
|
van der Zander QEW, Schreuder RM, Thijssen A, Kusters CHJ, Dehghani N, Scheeve T, Winkens B, van der Ende - van Loon MCM, de With PHN, van der Sommen F, Masclee AAM, Schoon EJ. Artificial intelligence for characterization of diminutive colorectal polyps: A feasibility study comparing two computer-aided diagnosis systems. Artif Intell Gastrointest Endosc 2024; 5:90574. [DOI: 10.37126/aige.v5.i1.90574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) has potential in the optical diagnosis of colorectal polyps.
AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system (CADx) AI for ColoRectal Polyps (AI4CRP) for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYETM (Fujifilm, Tokyo, Japan). CADx influence on the optical diagnosis of an expert endoscopist was also investigated.
METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm. Both CADx-systems exploit convolutional neural networks. Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard. AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value (range 0.0-1.0). A predefined cut-off value of 0.6 was set with values < 0.6 indicating benign and values ≥ 0.6 indicating premalignant colorectal polyps. Low confidence characterizations were defined as values 40% around the cut-off value of 0.6 (< 0.36 and > 0.76). Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.
RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps. Self-critical AI4CRP, excluding 14 low confidence characterizations [27.5% (14/51)], had a diagnostic accuracy of 89.2%, sensitivity of 89.7%, and specificity of 87.5%, which was higher compared to AI4CRP. CAD EYE had a 83.7% diagnostic accuracy, 74.2% sensitivity, and 100.0% specificity. Diagnostic performances of the endoscopist alone (before AI) increased non-significantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE (AI-assisted endoscopist). Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems, except for specificity for which CAD EYE performed best.
CONCLUSION Real-time use of AI4CRP was feasible. Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
Collapse
Affiliation(s)
- Quirine Eunice Wennie van der Zander
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, Netherlands
| | - Ramon M Schreuder
- Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven 5602 ZA, Netherlands
| | - Ayla Thijssen
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Nikoo Dehghani
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Thom Scheeve
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, Maastricht University, Postbus 616, 6200 MD Maastricht, Netherlands
- School for Public Health and Primary Care, Maastricht University, Maastricht 6200 MD, Netherlands
| | | | - Peter H N de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Ad A M Masclee
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
| | - Erik J Schoon
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, Netherlands
- Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven 5602 ZA, Netherlands
| |
Collapse
|
12
|
Nduma BN, Nkeonye S, Uwawah TD, Kaur D, Ekhator C, Ambe S. Use of Artificial Intelligence in the Diagnosis of Colorectal Cancer. Cureus 2024; 16:e53024. [PMID: 38410294 PMCID: PMC10895204 DOI: 10.7759/cureus.53024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common forms of cancer. Therefore, diagnosing the condition early and accurately is critical for improved patient outcomes and effective treatment. Recently, artificial intelligence (AI) algorithms such as support vector machine (SVM) and convolutional neural network (CNN) have demonstrated promise in medical image analysis. This paper, conducted from a systematic review perspective, aimed to determine the effectiveness of AI integration in CRC diagnosis, emphasizing accuracy, sensitivity, and specificity. From a methodological perspective, articles that were included were those that had been conducted in the past decade. Also, the articles needed to have been documented in English, with databases such as Embase, PubMed, and Google Scholar used to obtain relevant research studies. Similarly, keywords were used to arrive at relevant articles. These keywords included AI, CRC, specificity, sensitivity, accuracy, efficacy, effectiveness, disease diagnosis, screening, machine learning, area under the curve (AUC), and deep learning. From the results, most scholarly studies contend that AI is superior in medical image analysis, the development of subtle patterns, and decision support. However, while deploying these algorithms, a key theme is that the collaboration between medical experts and AI systems needs to be seamless. In addition, the AI algorithms ought to be refined continuously in the current world of big data and ensure that they undergo rigorous validation to provide more informed decision-making for or against adopting those AI tools in clinical settings. In conclusion, therefore, balancing between human expertise and technological innovation is likely to pave the way for the realization of AI's full potential concerning its promising role in improving CRC diagnosis, upon which there might be significant patient outcome improvements, disease detection, and the achievement of a more effective healthcare system.
Collapse
Affiliation(s)
| | - Stephen Nkeonye
- Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Davinder Kaur
- Internal Medicine, Medical City, North Richland Hills, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Solomon Ambe
- Neurology, Baylor Scott & White Health, McKinney, USA
| |
Collapse
|
13
|
Halvorsen N, Mori Y. Computer-aided polyp characterization in colonoscopy: sufficient performance or not? Clin Endosc 2024; 57:18-23. [PMID: 38178329 PMCID: PMC10834281 DOI: 10.5946/ce.2023.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 01/06/2024] Open
Abstract
Computer-assisted polyp characterization (computer-aided diagnosis, CADx) facilitates optical diagnosis during colonoscopy. Several studies have demonstrated high sensitivity and specificity of CADx tools in identifying neoplastic changes in colorectal polyps. To implement CADx tools in colonoscopy, there is a need to confirm whether these tools satisfy the threshold levels that are required to introduce optical diagnosis strategies such as "diagnose-and-leave," "resect-and-discard" or "DISCARD-lite." In this article, we review the available data from prospective trials regarding the effect of multiple CADx tools and discuss whether they meet these thresholds.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
14
|
Xin Y, Zhang Q, Liu X, Li B, Mao T, Li X. Application of artificial intelligence in endoscopic gastrointestinal tumors. Front Oncol 2023; 13:1239788. [PMID: 38144533 PMCID: PMC10747923 DOI: 10.3389/fonc.2023.1239788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
With an increasing number of patients with gastrointestinal cancer, effective and accurate early diagnostic clinical tools are required provide better health care for patients with gastrointestinal cancer. Recent studies have shown that artificial intelligence (AI) plays an important role in the diagnosis and treatment of patients with gastrointestinal tumors, which not only improves the efficiency of early tumor screening, but also significantly improves the survival rate of patients after treatment. With the aid of efficient learning and judgment abilities of AI, endoscopists can improve the accuracy of diagnosis and treatment through endoscopy and avoid incorrect descriptions or judgments of gastrointestinal lesions. The present article provides an overview of the application status of various artificial intelligence in gastric and colorectal cancers in recent years, and the direction of future research and clinical practice is clarified from a clinical perspective to provide a comprehensive theoretical basis for AI as a promising diagnostic and therapeutic tool for gastrointestinal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Tsao Y, Mukundan A, Lu S, Wang HC, Wang YP, Lu CL. Development of narrow-band image imaging based on hyperspectral image conversion technology for capsule endoscopy. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII 2023. [DOI: 10.1117/12.2688844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
16
|
Tsao Y, Mukundan A, Lu S, Wang HC, Wang YP, Lu CL. Development of narrow-band image imaging based on hyperspectral image conversion technology for capsule endoscopy. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII 2023:8. [DOI: https:/doi.org/10.1117/12.2688844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
17
|
Vadhwana B, Tarazi M, Patel V. The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3267. [PMID: 37892088 PMCID: PMC10606449 DOI: 10.3390/diagnostics13203267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Artificial intelligence (AI) presents a novel platform for improving disease diagnosis. However, the clinical utility of AI remains limited to discovery studies, with poor translation to clinical practice. Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of colorectal cancers are missed during colonoscopies. The primary aim of this study was to explore the role of artificial intelligence in real-time histological prediction of colorectal lesions during colonoscopy. A systematic search using MeSH headings relating to "AI", "machine learning", "computer-aided", "colonoscopy", and "colon/rectum/colorectal" identified 2290 studies. Thirteen studies reporting real-time analysis were included. A total of 2958 patients with 5908 colorectal lesions were included. A meta-analysis of six studies reporting sensitivities (95% CI) demonstrated that endoscopist diagnosis was superior to a computer-assisted detection platform, although no statistical significance was reached (p = 0.43). AI applications have shown encouraging results in differentiating neoplastic and non-neoplastic lesions using narrow-band imaging, white light imaging, and blue light imaging. Other modalities include autofluorescence imaging and elastic scattering microscopy. The current literature demonstrates that despite the promise of new endoscopic AI models, they remain inferior to expert endoscopist diagnosis. There is a need to focus developments on real-time histological predictions prior to clinical translation to demonstrate improved diagnostic capabilities and time efficiency.
Collapse
Affiliation(s)
- Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Vanash Patel
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
- West Hertfordshire Hospital NHS Trust, Vicarage Road, Watford WD18 0HB, UK
| |
Collapse
|
18
|
Lazo JF, Rosa B, Catellani M, Fontana M, Mistretta FA, Musi G, de Cobelli O, de Mathelin M, De Momi E. Semi-Supervised Bladder Tissue Classification in Multi-Domain Endoscopic Images. IEEE Trans Biomed Eng 2023; 70:2822-2833. [PMID: 37037233 DOI: 10.1109/tbme.2023.3265679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. METHOD We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. CONCLUSION The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. SIGNIFICANCE This study shows the potential of using semi-supervised GAN-based bladder tissue classification when annotations are limited in multi-domain data.
Collapse
|
19
|
Tee CHN, Ravi R, Ang TL, Li JW. Role of artificial intelligence in Barrett’s esophagus. Artif Intell Gastroenterol 2023; 4:28-35. [DOI: 10.35712/aig.v4.i2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 09/07/2023] Open
Abstract
The application of artificial intelligence (AI) in gastrointestinal endoscopy has gained significant traction over the last decade. One of the more recent applications of AI in this field includes the detection of dysplasia and cancer in Barrett’s esophagus (BE). AI using deep learning methods has shown promise as an adjunct to the endoscopist in detecting dysplasia and cancer. Apart from visual detection and diagnosis, AI may also aid in reducing the considerable interobserver variability in identifying and distinguishing dysplasia on whole slide images from digitized BE histology slides. This review aims to provide a comprehensive summary of the key studies thus far as well as providing an insight into the future role of AI in Barrett’s esophagus.
Collapse
Affiliation(s)
- Chin Hock Nicholas Tee
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - Rajesh Ravi
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| |
Collapse
|
20
|
van Bokhorst QNE, Houwen BBSL, Hazewinkel Y, Fockens P, Dekker E. Advances in artificial intelligence and computer science for computer-aided diagnosis of colorectal polyps: current status. Endosc Int Open 2023; 11:E752-E767. [PMID: 37593158 PMCID: PMC10431975 DOI: 10.1055/a-2098-1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/08/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Querijn N E van Bokhorst
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Yark Hazewinkel
- Department of Gastroenterology and Hepatology, Tergooi Medical Center, Hilversum, the Netherlands
| | - Paul Fockens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Maida M, Marasco G, Facciorusso A, Shahini E, Sinagra E, Pallio S, Ramai D, Murino A. Effectiveness and application of artificial intelligence for endoscopic screening of colorectal cancer: the future is now. Expert Rev Anticancer Ther 2023; 23:719-729. [PMID: 37194308 DOI: 10.1080/14737140.2023.2215436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) in gastrointestinal endoscopy includes systems designed to interpret medical images and increase sensitivity during examination. This may be a promising solution to human biases and may provide support during diagnostic endoscopy. AREAS COVERED This review aims to summarize and evaluate data supporting AI technologies in lower endoscopy, addressing their effectiveness, limitations, and future perspectives. EXPERT OPINION Computer-aided detection (CADe) systems have been studied with promising results, allowing for an increase in adenoma detection rate (ADR), adenoma per colonoscopy (APC), and a reduction in adenoma miss rate (AMR). This may lead to an increase in the sensitivity of endoscopic examinations and a reduction in the risk of interval-colorectal cancer. In addition, computer-aided characterization (CADx) has also been implemented, aiming to distinguish adenomatous and non-adenomatous lesions through real-time assessment using advanced endoscopic imaging techniques. Moreover, computer-aided quality (CADq) systems have been developed with the aim of standardizing quality measures in colonoscopy (e.g. withdrawal time and adequacy of bowel cleansing) both to improve the quality of examinations and set a reference standard for randomized controlled trials.
Collapse
Affiliation(s)
- Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", Castellana Grotte, Bari, Italy
| | - Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalu, Italy
| | - Socrate Pallio
- Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital, University of Messina, Messina, Italy
| | - Daryl Ramai
- Gastroenterology & Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Alberto Murino
- Royal Free Unit for Endoscopy, The Royal Free Hospital and University College London Institute for Liver and Digestive Health, Hampstead, London, UK
- Department of Gastroenterology, Cleveland Clinic London, London, UK
| |
Collapse
|
22
|
Dos Santos CEO, Malaman D, Arciniegas Sanmartin ID, Leão ABS, Leão GS, Pereira-Lima JC. Performance of artificial intelligence in the characterization of colorectal lesions. Saudi J Gastroenterol 2023; 29:219-224. [PMID: 37203122 PMCID: PMC10445495 DOI: 10.4103/sjg.sjg_316_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Background Image-enhanced endoscopy (IEE) has been used in the differentiation between neoplastic and non-neoplastic colorectal lesions through microvasculature analysis. This study aimed to evaluate the computer-aided diagnosis (CADx) mode of the CAD EYE system for the optical diagnosis of colorectal lesions and compare it with the performance of an expert, in addition to evaluating the computer-aided detection (CADe) mode in terms of polyp detection rate (PDR) and adenoma detection rate (ADR). Methods A prospective study was conducted to evaluate the performance of CAD EYE using blue light imaging (BLI), dichotomizing lesions into hyperplastic and neoplastic, and of an expert based on the Japan Narrow-Band Imaging Expert Team (JNET) classification for the characterization of lesions. After white light imaging (WLI) diagnosis, magnification was used on all lesions, which were removed and examined histologically. Diagnostic criteria were evaluated, and PDR and ADR were calculated. Results A total of 110 lesions (80 (72.7%) dysplastic lesions and 30 (27.3%) nondysplastic lesions) were evaluated in 52 patients, with a mean lesion size of 4.3 mm. Artificial intelligence (AI) analysis showed 81.8% accuracy, 76.3% sensitivity, 96.7% specificity, 98.5% positive predictive value (PPV), and 60.4% negative predictive value (NPV). The kappa value was 0.61, and the area under the receiver operating characteristic curve (AUC) was 0.87. Expert analysis showed 93.6% accuracy, 92.5% sensitivity, 96.7% specificity, 98.7% PPV, and 82.9% NPV. The kappa value was 0.85, and the AUC was 0.95. Overall, PDR was 67.6% and ADR was 45.9%. Conclusions The CADx mode showed good accuracy in characterizing colorectal lesions, but the expert assessment was superior in almost all diagnostic criteria. PDR and ADR were high.
Collapse
Affiliation(s)
- Carlos E. O. Dos Santos
- Department of Endoscopy, Santa Casa de Caridade Hospital, Bagé, RS, Brazil
- Department of Endoscopy, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Malaman
- Department of Endoscopy, Santa Casa de Caridade Hospital, Bagé, RS, Brazil
| | | | - Ari B. S. Leão
- Department of Endoscopy, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel S. Leão
- Department of Endoscopy, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlio C. Pereira-Lima
- Department of Gastroenterology and Endoscopy, Santa Casa Hospital, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Mansour NM. Artificial Intelligence in Colonoscopy. Curr Gastroenterol Rep 2023; 25:122-129. [PMID: 37129831 DOI: 10.1007/s11894-023-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI) is a rapidly growing field in gastrointestinal endoscopy, and its potential applications are virtually endless, with studies demonstrating use of AI for early gastric cancer, inflammatory bowel disease, Barrett's esophagus, capsule endoscopy, as well as other areas in gastroenterology. Much of the early studies and applications of AI in gastroenterology have revolved around colonoscopy, particularly with regards to real-time polyp detection and characterization. This review will cover much of the existing data on computer-aided detection (CADe), computer-aided diagnosis (CADx), and briefly discuss some other interesting applications of AI for colonoscopy, while also considering some of the challenges and limitations that exist around the use of AI for colonoscopy. RECENT FINDINGS Multiple randomized controlled trials have now been published which show a statistically significant improvement when using AI to improve adenoma detection and reduce adenoma miss rates during colonoscopy. There is also a growing pool of literature showing that AI can be helpful for characterizing/diagnosing colorectal polyps in real time. AI has also shown promise in other areas of colonoscopy, including polyp sizing and automated measurement and monitoring of quality metrics during colonoscopy. AI is a promising tool that has the ability to shape the future of gastrointestinal endoscopy, with much of the early data showing significant benefits to use of AI during colonoscopy. However, there remain several challenges that may delay or hamper the widespread use of AI in the field.
Collapse
Affiliation(s)
- Nabil M Mansour
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, 7200 Cambridge St., Suite 8B, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Sharma A, Kumar R, Yadav G, Garg P. Artificial intelligence in intestinal polyp and colorectal cancer prediction. Cancer Lett 2023; 565:216238. [PMID: 37211068 DOI: 10.1016/j.canlet.2023.216238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Artificial intelligence (AI) algorithms and their application to disease detection and decision support for healthcare professions have greatly evolved in the recent decade. AI has been widely applied and explored in gastroenterology for endoscopic analysis to diagnose intestinal cancers, premalignant polyps, gastrointestinal inflammatory lesions, and bleeding. Patients' responses to treatments and prognoses have both been predicted using AI by combining multiple algorithms. In this review, we explored the recent applications of AI algorithms in the identification and characterization of intestinal polyps and colorectal cancer predictions. AI-based prediction models have the potential to help medical practitioners diagnose, establish prognoses, and find accurate conclusions for the treatment of patients. With the understanding that rigorous validation of AI approaches using randomized controlled studies is solicited before widespread clinical use by health authorities, the article also discusses the limitations and challenges associated with deploying AI systems to diagnose intestinal malignancies and premalignant lesions.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, 160062, Punjab, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, 226010, India; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, 226010, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, 160062, Punjab, India.
| |
Collapse
|
25
|
Gimeno-García AZ, Hernández-Pérez A, Nicolás-Pérez D, Hernández-Guerra M. Artificial Intelligence Applied to Colonoscopy: Is It Time to Take a Step Forward? Cancers (Basel) 2023; 15:cancers15082193. [PMID: 37190122 DOI: 10.3390/cancers15082193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Growing evidence indicates that artificial intelligence (AI) applied to medicine is here to stay. In gastroenterology, AI computer vision applications have been stated as a research priority. The two main AI system categories are computer-aided polyp detection (CADe) and computer-assisted diagnosis (CADx). However, other fields of expansion are those related to colonoscopy quality, such as methods to objectively assess colon cleansing during the colonoscopy, as well as devices to automatically predict and improve bowel cleansing before the examination, predict deep submucosal invasion, obtain a reliable measurement of colorectal polyps and accurately locate colorectal lesions in the colon. Although growing evidence indicates that AI systems could improve some of these quality metrics, there are concerns regarding cost-effectiveness, and large and multicentric randomized studies with strong outcomes, such as post-colonoscopy colorectal cancer incidence and mortality, are lacking. The integration of all these tasks into one quality-improvement device could facilitate the incorporation of AI systems in clinical practice. In this manuscript, the current status of the role of AI in colonoscopy is reviewed, as well as its current applications, drawbacks and areas for improvement.
Collapse
Affiliation(s)
- Antonio Z Gimeno-García
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Anjara Hernández-Pérez
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - David Nicolás-Pérez
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Manuel Hernández-Guerra
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| |
Collapse
|
26
|
Artificial Intelligence-Aided Endoscopy and Colorectal Cancer Screening. Diagnostics (Basel) 2023; 13:diagnostics13061102. [PMID: 36980409 PMCID: PMC10047293 DOI: 10.3390/diagnostics13061102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with the highest incidence reported in high-income countries. However, because of the slow progression of neoplastic precursors, along with the opportunity for their endoscopic detection and resection, a well-designed endoscopic screening program is expected to strongly decrease colorectal cancer incidence and mortality. In this regard, quality of colonoscopy has been clearly related with the risk of post-colonoscopy colorectal cancer. Recently, the development of artificial intelligence (AI) applications in the medical field has been growing in interest. Through machine learning processes, and, more recently, deep learning, if a very high numbers of learning samples are available, AI systems may automatically extract specific features from endoscopic images/videos without human intervention, helping the endoscopists in different aspects of their daily practice. The aim of this review is to summarize the current knowledge on AI-aided endoscopy, and to outline its potential role in colorectal cancer prevention.
Collapse
|
27
|
Gan P, Li P, Xia H, Zhou X, Tang X. The application of artificial intelligence in improving colonoscopic adenoma detection rate: Where are we and where are we going. GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:203-213. [PMID: 35489584 DOI: 10.1016/j.gastrohep.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the common malignant tumors in the world. Colonoscopy is the crucial examination technique in CRC screening programs for the early detection of precursor lesions, and treatment of early colorectal cancer, which can reduce the morbidity and mortality of CRC significantly. However, pooled polyp miss rates during colonoscopic examination are as high as 22%. Artificial intelligence (AI) provides a promising way to improve the colonoscopic adenoma detection rate (ADR). It might assist endoscopists in avoiding missing polyps and offer an accurate optical diagnosis of suspected lesions. Herein, we described some of the milestone studies in using AI for colonoscopy, and the future application directions of AI in improving colonoscopic ADR.
Collapse
Affiliation(s)
- Peiling Gan
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peiling Li
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huifang Xia
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian Zhou
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
28
|
Chadebecq F, Lovat LB, Stoyanov D. Artificial intelligence and automation in endoscopy and surgery. Nat Rev Gastroenterol Hepatol 2023; 20:171-182. [PMID: 36352158 DOI: 10.1038/s41575-022-00701-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient's anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery.
Collapse
Affiliation(s)
- François Chadebecq
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Laurence B Lovat
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| |
Collapse
|
29
|
González-Bueno Puyal J, Brandao P, Ahmad OF, Bhatia KK, Toth D, Kader R, Lovat L, Mountney P, Stoyanov D. Spatio-temporal classification for polyp diagnosis. BIOMEDICAL OPTICS EXPRESS 2023; 14:593-607. [PMID: 36874484 PMCID: PMC9979670 DOI: 10.1364/boe.473446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
Collapse
Affiliation(s)
- Juana González-Bueno Puyal
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences (WEISS), University College London, London
W1W 7TY, UK
- Odin Vision, London W1W 7TY, UK
| | | | - Omer F. Ahmad
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences (WEISS), University College London, London
W1W 7TY, UK
| | | | | | - Rawen Kader
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences (WEISS), University College London, London
W1W 7TY, UK
| | - Laurence Lovat
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences (WEISS), University College London, London
W1W 7TY, UK
| | | | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences (WEISS), University College London, London
W1W 7TY, UK
| |
Collapse
|
30
|
Dilmaghani S, Coelho-Prabhu N. Role of Artificial Intelligence in Colonoscopy: A Literature Review of the Past, Present, and Future Directions. TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY 2023; 25:399-412. [DOI: 10.1016/j.tige.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Young EJ, Rajandran A, Philpott HL, Sathananthan D, Hoile SF, Singh R. Mucosal imaging in colon polyps: New advances and what the future may hold. World J Gastroenterol 2022; 28:6632-6661. [PMID: 36620337 PMCID: PMC9813932 DOI: 10.3748/wjg.v28.i47.6632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/19/2022] Open
Abstract
An expanding range of advanced mucosal imaging technologies have been developed with the goal of improving the detection and characterization of lesions in the gastrointestinal tract. Many technologies have targeted colorectal neoplasia given the potential for intervention prior to the development of invasive cancer in the setting of widespread surveillance programs. Improvement in adenoma detection reduces miss rates and prevents interval cancer development. Advanced imaging technologies aim to enhance detection without significantly increasing procedural time. Accurate polyp characterisation guides resection techniques for larger polyps, as well as providing the platform for the “resect and discard” and “do not resect” strategies for small and diminutive polyps. This review aims to collate and summarise the evidence regarding these technologies to guide colonoscopic practice in both interventional and non-interventional endoscopists.
Collapse
Affiliation(s)
- Edward John Young
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Arvinf Rajandran
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
| | - Hamish Lachlan Philpott
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Dharshan Sathananthan
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Sophie Fenella Hoile
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Rajvinder Singh
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| |
Collapse
|
32
|
Teramoto A, Hamada S, Ogino B, Yasuda I, Sano Y. Updates in narrow-band imaging for colorectal polyps: Narrow-band imaging generations, detection, diagnosis, and artificial intelligence. Dig Endosc 2022; 35:453-470. [PMID: 36480465 DOI: 10.1111/den.14489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/01/2022] [Indexed: 01/20/2023]
Abstract
Narrow-band imaging (NBI) is an optical digital enhancement method that allows the observation of vascular and surface structures of colorectal lesions. Its usefulness in the detection and diagnosis of colorectal polyps has been demonstrated in several clinical trials and the diagnostic algorithms have been simplified after the establishment of endoscopic classifications such as the Japan NBI Expert Team classification. However, there were issues including lack of brightness in the earlier models, poor visibility under insufficient bowel preparation, and the incompatibility of magnifying endoscopes in certain endoscopic platforms, which had impeded NBI from becoming standardized globally. Nonetheless, NBI continued its evolution and the newest endoscopic platform launched in 2020 offers significantly brighter and detailed images. Enhanced visualization is expected to improve the detection of polyps while universal compatibility across all scopes including magnifying endoscopy will promote the global standardization of magnifying diagnosis. Therefore, knowledge related to magnifying colonoscopy will become essential as magnification becomes standardly equipped in future models, although the advent of computer-aided diagnosis and detection may greatly assist endoscopists to ensure quality of practice. Given that most endoscopic departments will be using both old and new models, it is important to understand how each generation of endoscopic platforms differ from each other. We reviewed the advances in the endoscopic platforms, artificial intelligence, and evidence related to NBI essential for the next generation of endoscopic practice.
Collapse
Affiliation(s)
- Akira Teramoto
- Third Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Seiji Hamada
- Gastrointestinal Center, Urasoe General Hospital, Okinawa, Japan
| | - Banri Ogino
- Third Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Yasushi Sano
- Gastrointestinal Center, Sano Hospital, Hyogo, Japan
| |
Collapse
|
33
|
Hossain E, Abdelrahim M, Tanasescu A, Yamada M, Kondo H, Yamada S, Hamamoto R, Marugame A, Saito Y, Bhandari P. Performance of a novel computer-aided diagnosis system in the characterization of colorectal polyps, and its role in meeting Preservation and Incorporation of Valuable Endoscopic Innovations standards set by the American Society of Gastrointestinal Endoscopy. DEN OPEN 2022; 3:e178. [PMID: 36320934 PMCID: PMC9614381 DOI: 10.1002/deo2.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Background and aims There has been an increasing role of artificial intelligence (AI) in the characterization of colorectal polyps. Recently, a novel AI algorithm for the characterization of polyps was developed by NEC Corporation (Japan). The aim of our study is to perform an external validation of this algorithm. Methods The study was a video-based evaluation of the computer-aided diagnosis (CADx) system. Patients undergoing colonoscopy were recruited to record videos of colonic polyps. The frozen polyp images extracted from these videos were used for real-time histological prediction by the endoscopists and by the CADx system, and the results were compared. Results A total of 115 polyp images were extracted from 66 patients. Sensitivity, negative predictive value and accuracy for diminutive polyps on white light imaging (WLI) and image-enhanced endoscopy (IEE) when assessed by CADx was 90.9% [95% confidence interval (CI) 77.3-100] and 95.8% [95% CI 87.5-100], 80% [95% CI 44.4-97.5] and 90.9% [95% CI 58.7-99.8], 84.8% [95% CI 72.7-97] and 84.6% [95%CI 71.8-94.9], respectively, compared to 48.1% [95%CI 37.7-59.1] and 72% [95% CI 62.5-81], 37.5% [95% CI 28.8-46.8] and 55% [95% CI 44.7-65.0], 53.7% [95% CI 44.2-63.2] and 66.7% [95% CI 59.7-73.3] when assessed by endoscopists. Concordance between histology and CADx-based post-polypectomy surveillance intervals was 93.02% on WLI and 96% on IEE. Conclusion AI-based optical diagnosis is promising and has the potential to be better than the performance of general endoscopists. We believe that AI can help make real-time optical diagnoses of polyps meeting the Preservation and Incorporation of Valuable endoscopic Innovations standards set by the American Society of Gastrointestinal Endoscopy.
Collapse
Affiliation(s)
| | | | | | - Masayoshi Yamada
- National Cancer Center HospitalEndoscopy DivisionTokyoJapan,National Cancer Center Research InstituteDivision of Molecular Modification and Cancer BiologyTokyoJapan
| | - Hiroko Kondo
- National Cancer Center Research InstituteDivision of Molecular Modification and Cancer BiologyTokyoJapan,RIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | - Shijemi Yamada
- National Cancer Center Research InstituteDivision of Molecular Modification and Cancer BiologyTokyoJapan,RIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | - Ryuji Hamamoto
- National Cancer Center Research InstituteDivision of Molecular Modification and Cancer BiologyTokyoJapan,RIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | | | | | - Pradeep Bhandari
- Portsmouth Hospitals NHS TrustPortsmouthUK,University of Portsmouth, University HousePortsmouthUK
| |
Collapse
|
34
|
Jin J, Zhang Q, Dong B, Ma T, Mei X, Wang X, Song S, Peng J, Wu A, Dong L, Kong D. Automatic detection of early gastric cancer in endoscopy based on Mask region-based convolutional neural networks (Mask R-CNN)(with video). Front Oncol 2022; 12:927868. [PMID: 36338757 PMCID: PMC9630732 DOI: 10.3389/fonc.2022.927868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The artificial intelligence (AI)-assisted endoscopic detection of early gastric cancer (EGC) has been preliminarily developed. The currently used algorithms still exhibit limitations of large calculation and low-precision expression. The present study aimed to develop an endoscopic automatic detection system in EGC based on a mask region-based convolutional neural network (Mask R-CNN) and to evaluate the performance in controlled trials. For this purpose, a total of 4,471 white light images (WLIs) and 2,662 narrow band images (NBIs) of EGC were obtained for training and testing. In total, 10 of the WLIs (videos) were obtained prospectively to examine the performance of the RCNN system. Furthermore, 400 WLIs were randomly selected for comparison between the Mask R-CNN system and doctors. The evaluation criteria included accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The results revealed that there were no significant differences between the pathological diagnosis with the Mask R-CNN system in the WLI test (χ2 = 0.189, P=0.664; accuracy, 90.25%; sensitivity, 91.06%; specificity, 89.01%) and in the NBI test (χ2 = 0.063, P=0.802; accuracy, 95.12%; sensitivity, 97.59%). Among 10 WLI real-time videos, the speed of the test videos was up to 35 frames/sec, with an accuracy of 90.27%. In a controlled experiment of 400 WLIs, the sensitivity of the Mask R-CNN system was significantly higher than that of experts (χ2 = 7.059, P=0.000; 93.00% VS 80.20%), and the specificity was higher than that of the juniors (χ2 = 9.955, P=0.000, 82.67% VS 71.87%), and the overall accuracy rate was higher than that of the seniors (χ2 = 7.009, P=0.000, 85.25% VS 78.00%). On the whole, the present study demonstrates that the Mask R-CNN system exhibited an excellent performance status for the detection of EGC, particularly for the real-time analysis of WLIs. It may thus be effectively applied to clinical settings.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianqian Zhang
- Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bill Dong
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Tao Ma
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xuecan Mei
- Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Wang
- Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaofang Song
- Research and Development Department, Hefei Zhongna Medical Instrument Co. LTD, Hefei, China
| | - Jie Peng
- Research and Development Department, Hefei Zhongna Medical Instrument Co. LTD, Hefei, China
| | - Aijiu Wu
- Research and Development Department, Hefei Zhongna Medical Instrument Co. LTD, Hefei, China
| | - Lanfang Dong
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Derun Kong
- Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Derun Kong,
| |
Collapse
|
35
|
Rao HB, Sastry NB, Venu RP, Pattanayak P. The role of artificial intelligence based systems for cost optimization in colorectal cancer prevention programs. Front Artif Intell 2022; 5:955399. [PMID: 36248620 PMCID: PMC9563712 DOI: 10.3389/frai.2022.955399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal Cancer (CRC) has seen a dramatic increase in incidence globally. In 2019, colorectal cancer accounted for 1.15 million deaths and 24.28 million disability-adjusted life-years (DALYs) worldwide. In India, the annual incidence rates (AARs) for colon cancer was 4.4 per 100,000. There has been a steady rise in the prevalence of CRC in India which may be attributed to urbanization, mass migration of population, westernization of diet and lifestyle practices and a rise of obesity and metabolic risk factors that place the population at a higher risk of CRC. Moreoever, CRC in India differs from that described in the Western countries, with a higher proportion of young patients and more patients presenting with an advanced stage. This may be due to poor access to specialized healthcare and socio-economic factors. Early identification of adenomatous colonic polyps, which are well-recognized pre-cancerous lesions, at the time of screening colonoscopy has been shown to be the most effective measure used for CRC prevention. However, colonic polyps are frequently missed during colonoscopy and moreover, these screening programs necessitate man-power, time and resources for processing resected polyps, that may hamper penetration and efficacy in mid- to low-income countries. In the last decade, there has been significant progress made in the automatic detection of colonic polyps by multiple AI-based systems. With the advent of better AI methodology, the focus has shifted from mere detection to accurate discrimination and diagnosis of colonic polyps. These systems, once validated, could usher in a new era in Colorectal Cancer (CRC) prevention programs which would center around “Leave in-situ” and “Resect and discard” strategies. These new strategies hinge around the specificity and accuracy of AI based systems in correctly identifying the pathological diagnosis of the polyps, thereby providing the endoscopist with real-time information in order to make a clinical decision of either leaving the lesion in-situ (mucosal polyps) or resecting and discarding the polyp (hyperplastic polyps). The major advantage of employing these strategies would be in cost optimization of CRC prevention programs while ensuring good clinical outcomes. The adoption of these AI-based systems in the national cancer prevention program of India in accordance with the mandate to increase technology integration could prove to be cost-effective and enable implementation of CRC prevention programs at the population level. This level of penetration could potentially reduce the incidence of CRC and improve patient survival by enabling early diagnosis and treatment. In this review, we will highlight key advancements made in the field of AI in the identification of polyps during colonoscopy and explore the role of AI based systems in cost optimization during the universal implementation of CRC prevention programs in the context of mid-income countries like India.
Collapse
Affiliation(s)
- Harshavardhan B. Rao
- Department of Gastroenterology, M.S. Ramaiah Medical College, Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
- *Correspondence: Harshavardhan B. Rao
| | - Nandakumar Bidare Sastry
- Department of Gastroenterology, M.S. Ramaiah Medical College, Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Rama P. Venu
- Department of Gastroenterology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Preetiparna Pattanayak
- Department of Gastroenterology, M.S. Ramaiah Medical College, Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
36
|
García-Rodríguez A, Tudela Y, Córdova H, Carballal S, Ordás I, Moreira L, Vaquero E, Ortiz O, Rivero L, Sánchez FJ, Cuatrecasas M, Pellisé M, Bernal J, Fernández-Esparrach G. In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy. Endosc Int Open 2022; 10:E1201-E1207. [PMID: 36118638 PMCID: PMC9473851 DOI: 10.1055/a-1881-3178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background and study aims Artificial intelligence is currently able to accurately predict the histology of colorectal polyps. However, systems developed to date use complex optical technologies and have not been tested in vivo. The objective of this study was to evaluate the efficacy of a new deep learning-based optical diagnosis system, ATENEA, in a real clinical setting using only high-definition white light endoscopy (WLE) and to compare its performance with endoscopists. Methods ATENEA was prospectively tested in real life on consecutive polyps detected in colorectal cancer screening colonoscopies at Hospital Clínic. No images were discarded, and only WLE was used. The in vivo ATENEA's prediction (adenoma vs non-adenoma) was compared with the prediction of four staff endoscopists without specific training in optical diagnosis for the study purposes. Endoscopists were blind to the ATENEA output. Histology was the gold standard. Results Ninety polyps (median size: 5 mm, range: 2-25) from 31 patients were included of which 69 (76.7 %) were adenomas. ATENEA correctly predicted the histology in 63 of 69 (91.3 %, 95 % CI: 82 %-97 %) adenomas and 12 of 21 (57.1 %, 95 % CI: 34 %-78 %) non-adenomas while endoscopists made correct predictions in 52 of 69 (75.4 %, 95 % CI: 60 %-85 %) and 20 of 21 (95.2 %, 95 % CI: 76 %-100 %), respectively. The global accuracy was 83.3 % (95 % CI: 74%-90 %) and 80 % (95 % CI: 70 %-88 %) for ATENEA and endoscopists, respectively. Conclusion ATENEA can accurately be used for in vivo characterization of colorectal polyps, enabling the endoscopist to make direct decisions. ATENEA showed a global accuracy similar to that of endoscopists despite an unsatisfactory performance for non-adenomatous lesions.
Collapse
Affiliation(s)
- Ana García-Rodríguez
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain
| | - Yael Tudela
- Computer Science Department. Autonomous University of Barcelona and Computer Vision Center, Barcelona, Catalonia, Spain
| | - Henry Córdova
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - Sabela Carballal
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - Ingrid Ordás
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - Leticia Moreira
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - Eva Vaquero
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - Oswaldo Ortiz
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain
| | - Liseth Rivero
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - F. Javier Sánchez
- Computer Science Department. Autonomous University of Barcelona and Computer Vision Center, Barcelona, Catalonia, Spain
| | - Miriam Cuatrecasas
- IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain,Pathology Department. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain
| | - Maria Pellisé
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| | - Jorge Bernal
- Computer Science Department. Autonomous University of Barcelona and Computer Vision Center, Barcelona, Catalonia, Spain
| | - Glòria Fernández-Esparrach
- Endoscopy Unit. Gastroenterology Department. ICMDiM. Hospital Clínic of Barcelona. University of Barcelona, Barcelona, Catalonia, Spain,IDIBAPS, Barcelona, Catalonia, Spain,CIBEREHD, Spain
| |
Collapse
|
37
|
Auriemma F, Sferrazza S, Bianchetti M, Savarese MF, Lamonaca L, Paduano D, Piazza N, Giuffrida E, Mete LS, Tucci A, Milluzzo SM, Iannelli C, Repici A, Mangiavillano B. From advanced diagnosis to advanced resection in early neoplastic colorectal lesions: Never-ending and trending topics in the 2020s. World J Gastrointest Surg 2022; 14:632-655. [PMID: 36158280 PMCID: PMC9353749 DOI: 10.4240/wjgs.v14.i7.632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/02/2021] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colonoscopy represents the most widespread and effective tool for the prevention and treatment of early stage preneoplastic and neoplastic lesions in the panorama of cancer screening. In the world there are different approaches to the topic of colorectal cancer prevention and screening: different starting ages (45-50 years); different initial screening tools such as fecal occult blood with immunohistochemical or immune-enzymatic tests; recto-sigmoidoscopy; and colonoscopy. The key aspects of this scenario are composed of a proper bowel preparation that ensures a valid diagnostic examination, experienced endoscopist in detection of preneoplastic and early neoplastic lesions and open-minded to upcoming artificial intelligence-aided examination, knowledge in the field of resection of these lesions (from cold-snaring, through endoscopic mucosal resection and endoscopic submucosal dissection, up to advanced tools), and management of complications.
Collapse
Affiliation(s)
- Francesco Auriemma
- Gastrointestinal Endoscopy Unit, Humanitas Mater Domini, Castellanza 21053, Italy
| | - Sandro Sferrazza
- Gastroenterology and Endoscopy Unit, Santa Chiara Hospital, Trento 38014, Italy
| | - Mario Bianchetti
- Digestive Endoscopy Unit, San Giuseppe Hospital - Multimedica, Milan 20123, Italy
| | - Maria Flavia Savarese
- Department of Gastroenterology and Gastrointestinal Endoscopy, General Hospital, Sanremo 18038, Italy
| | - Laura Lamonaca
- Gastrointestinal Endoscopy Unit, Humanitas Mater Domini, Castellanza 21053, Italy
| | - Danilo Paduano
- Gastrointestinal Endoscopy Unit, Humanitas Mater Domini, Castellanza 21053, Italy
| | - Nicole Piazza
- Gastroenterology Unit, IRCCS Policlinico San Donato, San Donato Milanese; Department of Biomedical Sciences for Health, University of Milan, Milan 20122, Italy
| | - Enrica Giuffrida
- Gastroenterology and Hepatology Unit, A.O.U. Policlinico “G. Giaccone", Palermo 90127, Italy
| | - Lupe Sanchez Mete
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Alessandra Tucci
- Department of Gastroenterology, Molinette Hospital, Città della salute e della Scienza di Torino, Turin 10126, Italy
| | | | - Chiara Iannelli
- Department of Health Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Alessandro Repici
- Digestive Endoscopy Unit and Gastroenterology, Humanitas Clinical and Research Center and Humanitas University, Rozzano 20089, Italy
| | - Benedetto Mangiavillano
- Biomedical Science, Hunimed, Pieve Emanuele 20090, Italy
- Gastrointestinal Endoscopy Unit, Humanitas Mater Domini, Castellanza, Varese 21053, Italy
| |
Collapse
|
38
|
Rao B H, Trieu JA, Nair P, Gressel G, Venu M, Venu RP. Artificial intelligence in endoscopy: More than what meets the eye in screening colonoscopy and endosonographic evaluation of pancreatic lesions. Artif Intell Gastrointest Endosc 2022; 3:16-30. [DOI: 10.37126/aige.v3.i3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI)-based tools have ushered in a new era of innovation in the field of gastrointestinal (GI) endoscopy. Despite vast improvements in endoscopic techniques and equipment, diagnostic endoscopy remains heavily operator-dependent, in particular, colonoscopy and endoscopic ultrasound (EUS). Recent reports have shown that as much as 25% of colonic adenomas may be missed at colonoscopy. This can result in an increased incidence of interval colon cancer. Similarly, EUS has been shown to have high inter-observer variability, overlap in diagnoses with a relatively low specificity for pancreatic lesions. Our understanding of Machine-learning (ML) techniques in AI have evolved over the last decade and its application in AI–based tools for endoscopic detection and diagnosis is being actively investigated at several centers. ML is an aspect of AI that is based on neural networks, and is widely used for image classification, object detection, and semantic segmentation which are key functional aspects of AI-related computer aided diagnostic systems. In this review, current status and limitations of ML, specifically for adenoma detection and endosonographic diagnosis of pancreatic lesions, will be summarized from existing literature. This will help to better understand its role as viewed through the prism of real world application in the field of GI endoscopy.
Collapse
Affiliation(s)
- Harshavardhan Rao B
- Department of Gastroenterology, Amrita Institute of Medical Sciences, Kochi 682041, Kerala, India
| | - Judy A Trieu
- Internal Medicine - Gastroenterology, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Priya Nair
- Department of Gastroenterology, Amrita Institute of Medical Sciences, Kochi 682041, Kerala, India
| | - Gilad Gressel
- Center for Cyber Security Systems and Networks, Amrita Vishwavidyapeetham, Kollam 690546, Kerala, India
| | - Mukund Venu
- Internal Medicine - Gastroenterology, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Rama P Venu
- Department of Gastroenterology, Amrita Institute of Medical Sciences, Kochi 682041, Kerala, India
| |
Collapse
|
39
|
Lu Y, Wu J, Zhuo X, Hu M, Chen Y, Luo Y, Feng Y, Zhi M, Li C, Sun J. Real-Time Artificial Intelligence-Based Histologic Classifications of Colorectal Polyps Using Narrow-Band Imaging. Front Oncol 2022; 12:879239. [PMID: 35619917 PMCID: PMC9128404 DOI: 10.3389/fonc.2022.879239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Aims With the development of artificial intelligence (AI), we have become capable of applying real-time computer-aided detection (CAD) in clinical practice. Our aim is to develop an AI-based CAD-N and optimize its diagnostic performance with narrow-band imaging (NBI) images. Methods We developed the CAD-N model with ResNeSt using NBI images for real-time assessment of the histopathology of colorectal polyps (type 1, hyperplastic or inflammatory polyps; type 2, adenomatous polyps, intramucosal cancer, or superficial submucosal invasive cancer; type 3, deep submucosal invasive cancer; and type 4, normal mucosa). We also collected 116 consecutive polyp videos to validate the accuracy of the CAD-N. Results A total of 10,573 images (7,032 images from 650 polyps and 3,541 normal mucous membrane images) from 478 patients were finally chosen for analysis. The sensitivity, specificity, PPV, NPV, and accuracy for each type of the CAD-N in the test set were 89.86%, 97.88%, 93.13%, 96.79%, and 95.93% for type 1; 93.91%, 95.49%, 91.80%, 96.69%, and 94.94% for type 2; 90.21%, 99.29%, 90.21%, 99.29%, and 98.68% for type 3; and 94.86%, 97.28%, 94.73%, 97.35%, and 96.45% for type 4, respectively. The overall accuracy was 93%. We also built models for polyps ≤5 mm, and the sensitivity, specificity, PPV, NPV, and accuracy for them were 96.81%, 94.08%, 95%, 95.97%, and 95.59%, respectively. Video validation results showed that the sensitivity, specificity, and accuracy of the CAD-N were 84.62%, 86.27%, and 85.34%, respectively. Conclusions We have developed real-time AI-based histologic classifications of colorectal polyps using NBI images with good accuracy, which may help in clinical management and documentation of optical histology results.
Collapse
Affiliation(s)
- Yi Lu
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiachuan Wu
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xianhua Zhuo
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Otorhinolaryngology, the Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhui Hu
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongpeng Chen
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxuan Luo
- Tianjin Economic-Technological Development Area (TEDA) Yujin Digestive Health Industry Research Institute, Tianjin, China
| | - Yue Feng
- Tianjin Economic-Technological Development Area (TEDA) Yujin Digestive Health Industry Research Institute, Tianjin, China
| | - Min Zhi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chujun Li
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiachen Sun
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Current Status and Future Perspectives of Artificial Intelligence in Colonoscopy. J Clin Med 2022; 11:jcm11102923. [PMID: 35629049 PMCID: PMC9143862 DOI: 10.3390/jcm11102923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
The early endoscopic identification, resection, and treatment of precancerous adenoma and early-stage cancer has been shown to reduce not only the prevalence of colorectal cancer but also its mortality rate. Recent advances in endoscopic devices and imaging technology have dramatically improved our ability to detect colorectal lesions and predict their pathological diagnosis. In addition to this, rapid advances in artificial intelligence (AI) technology mean that AI-related research and development is now progressing in the diagnostic imaging field, particularly colonoscopy, and AIs (i.e., devices that mimic cognitive abilities, such as learning and problem-solving) already approved as medical devices are now being introduced into everyday clinical practice. Today, there is an increasing expectation that sophisticated AIs will be able to provide high-level diagnostic performance irrespective of the level of skill of the endoscopist. In this paper, we review colonoscopy-related AI research and the AIs that have already been approved and discuss the future prospects of this technology.
Collapse
|
41
|
Turshudzhyan A, Rezaizadeh H, Tadros M. Lessons learned: Preventable misses and near-misses of endoscopic procedures. World J Gastrointest Endosc 2022; 14:302-310. [PMID: 35719899 PMCID: PMC9157695 DOI: 10.4253/wjge.v14.i5.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Endoscopy is a complex procedure that requires advanced training and a highly skilled practitioner. The advances in the field of endoscopy have made it an invaluable diagnostic tool, but the procedure remains provider dependent. The quality of endoscopy may vary from provider to provider and, as a result, is not perfect. Consequently, 11.3% of upper gastrointestinal neoplasms are missed on the initial upper endoscopy and 2.1%-5.9% of colorectal polyps or cancers are missed on colonoscopy. Pathology is overlooked if endoscopic exam is not done carefully, bypassing proper visualization of the scope’s entry and exit points or, if exam is not taken to completion, not visualizing the most distal bowel segments. We hope to shed light on this issue, establish areas of weakness, and propose possible solutions and preventative measures.
Collapse
Affiliation(s)
- Alla Turshudzhyan
- Department of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Houman Rezaizadeh
- Department of Gastroenterology and Hepatology, University of Connecticut, Farmington, CT 06030, United States
| | - Micheal Tadros
- Department of Gastroenterology and Hepatology, Albany Medical College, Albany, NY 12208, United States
| |
Collapse
|
42
|
Minchenberg SB, Walradt T, Glissen Brown JR. Scoping out the future: The application of artificial intelligence to gastrointestinal endoscopy. World J Gastrointest Oncol 2022; 14:989-1001. [PMID: 35646286 PMCID: PMC9124983 DOI: 10.4251/wjgo.v14.i5.989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a quickly expanding field in gastrointestinal endoscopy. Although there are a myriad of applications of AI ranging from identification of bleeding to predicting outcomes in patients with inflammatory bowel disease, a great deal of research has focused on the identification and classification of gastrointestinal malignancies. Several of the initial randomized, prospective trials utilizing AI in clinical medicine have centered on polyp detection during screening colonoscopy. In addition to work focused on colorectal cancer, AI systems have also been applied to gastric, esophageal, pancreatic, and liver cancers. Despite promising results in initial studies, the generalizability of most of these AI systems have not yet been evaluated. In this article we review recent developments in the field of AI applied to gastrointestinal oncology.
Collapse
Affiliation(s)
- Scott B Minchenberg
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02130, United States
| | - Trent Walradt
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02130, United States
| | - Jeremy R Glissen Brown
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02130, United States
| |
Collapse
|
43
|
Abstract
Artificial intelligence (AI) is rapidly developing in various medical fields, and there is an increase in research performed in the field of gastrointestinal (GI) endoscopy. In particular, the advent of convolutional neural network, which is a class of deep learning method, has the potential to revolutionize the field of GI endoscopy, including esophagogastroduodenoscopy (EGD), capsule endoscopy (CE), and colonoscopy. A total of 149 original articles pertaining to AI (27 articles in esophagus, 30 articles in stomach, 29 articles in CE, and 63 articles in colon) were identified in this review. The main focuses of AI in EGD are cancer detection, identifying the depth of cancer invasion, prediction of pathological diagnosis, and prediction of Helicobacter pylori infection. In the field of CE, automated detection of bleeding sites, ulcers, tumors, and various small bowel diseases is being investigated. AI in colonoscopy has advanced with several patient-based prospective studies being conducted on the automated detection and classification of colon polyps. Furthermore, research on inflammatory bowel disease has also been recently reported. Most studies of AI in the field of GI endoscopy are still in the preclinical stages because of the retrospective design using still images. Video-based prospective studies are needed to advance the field. However, AI will continue to develop and be used in daily clinical practice in the near future. In this review, we have highlighted the published literature along with providing current status and insights into the future of AI in GI endoscopy.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastroenterology, Tonan Hospital, Sapporo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
44
|
Larsen SLV, Mori Y. Artificial intelligence in colonoscopy: A review on the current status. DEN OPEN 2022; 2:e109. [PMID: 35873511 PMCID: PMC9302306 DOI: 10.1002/deo2.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
Artificial intelligence has become an increasingly hot topic in the last several years, and it has also gained its way into the medical field. In recent years, the application of artificial intelligence in the gastroenterology field has been of increasing interest, particularly in the colonoscopy setting. Novel technologies such as deep neural networks have enabled real‐time computer‐aided polyp detection and diagnosis during colonoscopy. This might lead to increased performance of endoscopists as well as potentially reducing the costs of unnecessary polypectomies of hyperplastic polyps. Newly published prospective trials studying computer‐aided detection showed that the assistance of artificial intelligence significantly increased the detection of polyps and non‐advanced adenomas approximately by 10%, while three tandem randomized control trials proved that the adenoma miss rate was significantly reduced (e.g., 13.8% vs. 36.7% in one Japanese multicenter trial). Promising results have also been shown in prospective single‐arm trials on computer‐aided polyp diagnosis, but the evidence is insufficient to reach a conclusion.
Collapse
Affiliation(s)
- Solveig Linnea Veen Larsen
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo Oslo Norway.,Department of Transplantation Medicine, Oslo University Hospital University of Oslo Oslo Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo Oslo Norway.,Department of Transplantation Medicine, Oslo University Hospital University of Oslo Oslo Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital Kanagawa Japan
| |
Collapse
|
45
|
Li JW, Wang LM, Ang TL. Artificial intelligence-assisted colonoscopy: a narrative review of current data and clinical applications. Singapore Med J 2022; 63:118-124. [PMID: 35509251 PMCID: PMC9251247 DOI: 10.11622/smedj.2022044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Colonoscopy is the reference standard procedure for the prevention and diagnosis of colorectal cancer, which is a leading cause of cancer-related deaths in Singapore. Artificial intelligence systems are automated, objective and reproducible. Artificial intelligence-assisted colonoscopy has recently been introduced into clinical practice as a clinical decision support tool. This review article provides a summary of the current published data and discusses ongoing research and current clinical applications of artificial intelligence-assisted colonoscopy.
Collapse
Affiliation(s)
- James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore
| | - Lai Mun Wang
- Pathology Section, Department of Laboratory Medicine, Changi General Hospital, Singapore
- SingHealth Duke-NUS Pathology Academic Clinical Programme, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore
| |
Collapse
|
46
|
A deep representation to fully characterize hyperplastic, adenoma, and serrated polyps on narrow band imaging sequences. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-021-00633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Zhuang H, Bao A, Tan Y, Wang H, Xie Q, Qiu M, Xiong W, Liao F. Application and prospect of artificial intelligence in digestive endoscopy. Expert Rev Gastroenterol Hepatol 2022; 16:21-31. [PMID: 34937459 DOI: 10.1080/17474124.2022.2020646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the progress of science and technology, artificial intelligence represented by deep learning has gradually begun to be applied in the medical field. Artificial intelligence has been applied to benign gastrointestinal lesions, tumors, early cancer, inflammatory bowel disease, gallbladder, pancreas, and other diseases. This review summarizes the latest research results on artificial intelligence in digestive endoscopy and discusses the prospect of artificial intelligence in digestive system diseases. AREAS COVERED We retrieved relevant documents on artificial intelligence in digestive tract diseases from PubMed and Medline. This review elaborates on the knowledge of computer-aided diagnosis in digestive endoscopy. EXPERT OPINION Artificial intelligence significantly improves diagnostic accuracy, reduces physicians' workload, and provides a shred of evidence for clinical diagnosis and treatment. Shortly, artificial intelligence will have high application value in the field of medicine.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Tan
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanyu Wang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meiqi Qiu
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanli Xiong
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
48
|
Okamoto Y, Yoshida S, Izakura S, Katayama D, Michida R, Koide T, Tamaki T, Kamigaichi Y, Tamari H, Shimohara Y, Nishimura T, Inagaki K, Tanaka H, Yamashita K, Sumimoto K, Oka S, Tanaka S. Development of multi-class computer-aided diagnostic systems using the NICE/JNET classifications for colorectal lesions. J Gastroenterol Hepatol 2022; 37:104-110. [PMID: 34478167 DOI: 10.1111/jgh.15682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Diagnostic support using artificial intelligence may contribute to the equalization of endoscopic diagnosis of colorectal lesions. We developed computer-aided diagnosis (CADx) support system for diagnosing colorectal lesions using the NBI International Colorectal Endoscopic (NICE) classification and the Japan NBI Expert Team (JNET) classification. METHODS Using Residual Network as the classifier and NBI images as training images, we developed a CADx based on the NICE classification (CADx-N) and a CADx based on the JNET classification (CADx-J). For validation, 480 non-magnifying and magnifying NBI images were used for the CADx-N and 320 magnifying NBI images were used for the CADx-J. The diagnostic performance of the CADx-N was evaluated using the magnification rate. RESULTS The accuracy of the CADx-N for Types 1, 2, and 3 was 97.5%, 91.2%, and 93.8%, respectively. The diagnostic performance for each magnification level was good (no statistically significant difference). The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the CADx-J were 100%, 96.3%, 82.8%, 100%, and 96.9% for Type 1; 80.3%, 93.7%, 94.1%, 79.2%, and 86.3% for Type 2A; 80.4%, 84.7%, 46.8%, 96.3%, and 84.1% for Type 2B; and 62.5%, 99.6%, 96.8%, 93.8%, and 94.1% for Type 3, respectively. CONCLUSIONS The multi-class CADx systems had good diagnostic performance with both the NICE and JNET classifications and may aid in educating non-expert endoscopists and assist in diagnosing colorectal lesions.
Collapse
Affiliation(s)
- Yuki Okamoto
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigeto Yoshida
- Department of Gastroenterology, JR Hiroshima Hospital, Hiroshima, Japan
| | - Seiji Izakura
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, Hiroshima, Japan
| | - Daisuke Katayama
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Michida
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, Hiroshima, Japan
| | - Tetsushi Koide
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, Hiroshima, Japan
| | - Toru Tamaki
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Kamigaichi
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Hirosato Tamari
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasutsugu Shimohara
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoyuki Nishimura
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuaki Inagaki
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Hidenori Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Ken Yamashita
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Kyoku Sumimoto
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
49
|
Hardy NP, Mac Aonghusa P, Neary PM, Cahill RA. Intraprocedural Artificial Intelligence for Colorectal Cancer Detection and Characterisation in Endoscopy and Laparoscopy. Surg Innov 2021; 28:768-775. [PMID: 33634722 PMCID: PMC8647474 DOI: 10.1177/1553350621997761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, we provide an evidence-based primer of current tools and evolving concepts in the area of intraprocedural artificial intelligence (AI) methods in colonoscopy and laparoscopy as a 'procedure companion', with specific focus on colorectal cancer recognition and characterisation. These interventions are both likely beneficiaries from an impending rapid phase in technical and technological evolution. The domains where AI is most likely to impact are explored as well as the methodological pitfalls pertaining to AI methods. Such issues include the need for large volumes of data to train AI systems, questions surrounding false positive rates, explainability and interpretability as well as recent concerns surrounding instabilities in current deep learning (DL) models. The area of biophysics-inspired models, a potential remedy to some of these pitfalls, is explored as it could allow our understanding of the fundamental physiological differences between tissue types to be exploited in real time with the help of computer-assisted interpretation. Right now, such models can include data collected from dynamic fluorescence imaging in surgery to characterise lesions by their biology reducing the number of cases needed to build a reliable and interpretable classification system. Furthermore, instead of focussing on image-by-image analysis, such systems could analyse in a continuous fashion, more akin to how we view procedures in real life and make decisions in a manner more comparable to human decision-making. Synergistical approaches can ensure AI methods usefully embed within practice thus safeguarding against collapse of this exciting field of investigation as another 'boom and bust' cycle of AI endeavour.
Collapse
Affiliation(s)
- Niall P Hardy
- UCD Centre for Precision Surgery, School of
Medicine, University College Dublin, Dublin, Ireland
| | | | - Peter M Neary
- Department of Surgery, University College
Cork, University Hospital Waterford, Waterford, Ireland
| | - Ronan A Cahill
- UCD Centre for Precision Surgery, School of
Medicine, University College Dublin, Dublin, Ireland
- Department of Surgery, Mater Misericordiae University
Hospital, Dublin, Ireland
| |
Collapse
|
50
|
van der Zander QEW, Schreuder RM, Fonollà R, Scheeve T, van der Sommen F, Winkens B, Aepli P, Hayee B, Pischel AB, Stefanovic M, Subramaniam S, Bhandari P, de With PHN, Masclee AAM, Schoon EJ. Optical diagnosis of colorectal polyp images using a newly developed computer-aided diagnosis system (CADx) compared with intuitive optical diagnosis. Endoscopy 2021; 53:1219-1226. [PMID: 33368056 DOI: 10.1055/a-1343-1597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Optical diagnosis of colorectal polyps remains challenging. Image-enhancement techniques such as narrow-band imaging and blue-light imaging (BLI) can improve optical diagnosis. We developed and prospectively validated a computer-aided diagnosis system (CADx) using high-definition white-light (HDWL) and BLI images, and compared the system with the optical diagnosis of expert and novice endoscopists. METHODS CADx characterized colorectal polyps by exploiting artificial neural networks. Six experts and 13 novices optically diagnosed 60 colorectal polyps based on intuition. After 4 weeks, the same set of images was permuted and optically diagnosed using the BLI Adenoma Serrated International Classification (BASIC). RESULTS CADx had a diagnostic accuracy of 88.3 % using HDWL images and 86.7 % using BLI images. The overall diagnostic accuracy combining HDWL and BLI (multimodal imaging) was 95.0 %, which was significantly higher than that of experts (81.7 %, P = 0.03) and novices (66.7 %, P < 0.001). Sensitivity was also higher for CADx (95.6 % vs. 61.1 % and 55.4 %), whereas specificity was higher for experts compared with CADx and novices (95.6 % vs. 93.3 % and 93.2 %). For endoscopists, diagnostic accuracy did not increase when using BASIC, either for experts (intuition 79.5 % vs. BASIC 81.7 %, P = 0.14) or for novices (intuition 66.7 % vs. BASIC 66.5 %, P = 0.95). CONCLUSION CADx had a significantly higher diagnostic accuracy than experts and novices for the optical diagnosis of colorectal polyps. Multimodal imaging, incorporating both HDWL and BLI, improved the diagnostic accuracy of CADx. BASIC did not increase the diagnostic accuracy of endoscopists compared with intuitive optical diagnosis.
Collapse
Affiliation(s)
- Quirine E W van der Zander
- Division of Gastroenterology and Hepatology, Maastricht University Medical Center + Maastricht, the Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ramon M Schreuder
- Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Roger Fonollà
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Thom Scheeve
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, CAPHRI, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Patrick Aepli
- Division of Gastroenterology and Hepatology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Bu'Hussain Hayee
- Division of Gastroenterology and Hepatology, King's College Hospital, London, United Kingdom
| | - Andreas B Pischel
- Division of Gastroenterology and Hepatology, University Hospital Gothenburg, Gothenburg, Sweden
| | - Milan Stefanovic
- Division of Gastroenterology and Hepatology, Diagnostični Center Bled, Ljubljana, Slovenia
| | - Sharmila Subramaniam
- Division of Gastroenterology and Hepatology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - Pradeep Bhandari
- Division of Gastroenterology and Hepatology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - Peter H N de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Ad A M Masclee
- Division of Gastroenterology and Hepatology, Maastricht University Medical Center + Maastricht, the Netherlands
| | - Erik J Schoon
- GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| |
Collapse
|