1
|
Kim DJ, Jeong H, Kim SY, Kim YH, Yim HW. Efficacy of non-invasive brain stimulation in reducing craving in patients with alcohol use disorder: systematic review and meta-analysis. BMC Psychiatry 2025; 25:496. [PMID: 40380172 PMCID: PMC12085020 DOI: 10.1186/s12888-025-06883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/17/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Craving plays a central role in reinforcing alcohol use disorder (AUD), and non-invasive brain stimulation (NIBS) has shown potential as a therapeutic intervention in AUD. We aim to evaluate the efficacy and safety following the application of NIBS in patients with AUD. METHODS A search of the PubMed, EMBASE, Cochrane Library and PsycINFO databases for articles published up to June 30, 2024 using predefined search terms identified a total of 20 randomized controlled trials (RCTs) and 22 units. The primary outcome of this study was the change in craving severity. The secondary outcome was the rate of adverse events. RESULTS Comparing the effect of alcohol craving severity reduction between the NIBS group and the sham group, the NIBS group showed a significant reduction in alcohol craving severity compared to the sham group (SMD = -0.211; 95% CI = -0.379 to -0.042). The I2 value was 22.2%, indicating a low level of heterogeneity (p = 0.17). Regarding safety, the NIBS group had an increased rate of adverse events compared to the sham group, but this was not significant (OR = 1.494; 95% CI = 0.834 to 2.675). In a subgroup analysis based on the types of NIBS, only transcranial direct current stimulation showed a significant effect (SMD = -0.214; 95% CI = -0.427 to -0.002). Subgroup analyses of stimulation parameters in NIBS showed that a significant reduction in craving severity was observed when NIBS was applied to the dorsolateral prefrontal cortex (SMD = -0.200; 95% CI = -0.381 to -0.019) and when multiple sessions were administered (SMD = -0.388; 95% CI = -0.620 to -0.156). In addition, a significant reduction in craving severity due to delayed effects was observed even 4 weeks after the last stimulation (SMD = -0.553; 95% CI = -0.979 to -0.126), but this finding should be interpreted with caution. CONCLUSIONS NIBS is effective in reducing the severity of craving in patients with AUD. This study provides the latest evidence on the effect of NIBS in reducing craving severity in AUD patients.
Collapse
Affiliation(s)
- Dae Jin Kim
- Department of Korean Medicine Policy, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyunsuk Jeong
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Yeon Kim
- Department of Evidence Development Support, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Young Hwa Kim
- Divison of Control for Zoonotic and Vector-borne Disease, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Naghavi A, Dadgar H, Daraei G, Modarreszadeh A. On the Effects of Non-Invasive Brain Stimulation Techniques on Developmental Dyslexia: A Systematic Review of Randomized Controlled Trials. IRANIAN JOURNAL OF PSYCHIATRY 2025; 20:209-222. [PMID: 40521277 PMCID: PMC12159574 DOI: 10.18502/ijps.v20i2.18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 06/18/2025]
Abstract
Objective: Non-invasive brain stimulation (NIBS) can safely influence brain activity, enhancing cognitive functions and offering potential benefits for learning disabilities like dyslexia. This paper aims to fill the current gap in comprehensive reviews on NIBS studies specifically targeting dyslexic individuals. Method : we conducted a systematic review across several databases, including PubMed, Web of Science, Scopus, Google Scholar, and CENTRAL Cochrane. The initial search strategy was designed to be as comprehensive as possible to capture all pertinent studies. We did not impose any language restrictions or time constraints during our search. The strategy was initially created using MEDLINE MeSH terms and subsequently adapted for the other databases. Our search included the keywords "dyslexia" in combination with "NIBS", "transcranial magnetic stimulation (TMS)", "transcranial direct current stimulation (tDCS)", and other NIBS types like repetitive TMS and transcranial alternating current stimulation (tACS). Results: 17 randomized controlled trial (RCT) studies were found to meet the eligibility criteria and are included in this review. Findings showed that repeated tDCS sessions, when paired with reading interventions, can effectively enhance reading abilities. Studies indicate that anodal tDCS applied to the left temporo-parietal cortex (TPC) and cathodal tDCS to the right TPC, along with phonology-based reading training, have led to improvements in various reading metrics, including the reading of pseudo-words and low-frequency words. Notably, traditional reading areas appear to respond well to modulation through NIBS, and facilitative protocols can enhance various subprocesses related to reading. Conclusion: Research indicates that tDCS, when used with reading interventions, enhances specific reading skills in individuals with dyslexia. Additionally, gamma-tACS applied to the left auditory cortex yields short-term improvements in neurophysiological responses to auditory stimuli. However, further randomized controlled trials with long-term follow-ups are necessary to establish the clinical effectiveness of these interventions.
Collapse
Affiliation(s)
- Azam Naghavi
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Hooshang Dadgar
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Daraei
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Amin Modarreszadeh
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chmiel J, Stępień-Słodkowska M, Ramik-Mażewska I. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Substance Use Disorder (SUD)-A Review and Insights into Possible Mechanisms of Action. J Clin Med 2025; 14:1337. [PMID: 40004867 PMCID: PMC11856849 DOI: 10.3390/jcm14041337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction: Substance use disorder (SUD) is a significant global clinical issue marked by the excessive consumption of alcohol, nicotine, and various psychoactive substances, leading to impaired social, cognitive, and occupational functioning. Individuals with SUD frequently experience depression and anxiety disorders, which exacerbate their prognosis and contribute to substantial health and social burdens. The pathophysiology of SUD and its associated conditions is multifaceted, involving multiple dysfunctions in the brain. This complexity underscores an urgent need for the development of noninvasive treatments that can directly target the brain. One of them is transcranial direct current stimulation (tDCS), an intensively studied technique for safely modulating cortical excitability. The aim of this study is to investigate the effectiveness of tDCS in treating symptoms of depression and anxiety in SUD. Methods: With an emphasis on the underlying mechanisms of action, this mechanistic review investigates the effectiveness of tDCS in treating anxiety and depression in SUD patients. Literature searches were conducted using the PubMed/Medline, ResearchGate, Cochrane, and Google Scholar databases. Results: The review identified 12 relevant studies. The results showed that left dorsolateral prefrontal cortex (DLPFC) stimulation is an effective treatment option for depression in SUD. In anxiety disorders, left and right DLPFC stimulation is effective, with better results observed with right DLPFC stimulation. However, the included studies differed in their methodology, sample characteristics, and measurement methods, which could have influenced the final results of the analysis. The central focus of this mechanistic review is to discuss the potential mechanisms of action of tDCS in treating depression and anxiety in SUD. These mechanisms include the modulation of brain networks, a reduction in neuroinflammation, an enhancement in neuroplasticity, and an increase in P300 amplitude. We also discuss the limitations of the included studies and propose ways to address them in future research. Conclusions: This review provides evidence that tDCS is an effective treatment option for anxiety and depression in SUD. Stimulation of the left DLPFC reduces symptoms of depression, while stimulation of the right DLPFC reduces symptoms of anxiety. However, future research is required to confirm these findings and to deepen our understanding of the mechanisms through which tDCS exerts its effects in this context. Neuroimaging methods (fMRI and EEG) and blood tests could be particularly useful.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Physical Culture Sciences, Faculty of Physical Culture and Health, University of Szczecin, Al. Piastów 40B, Block 6, 71-065 Szczecin, Poland
- Doctoral School, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Institute of Physical Culture Sciences, Faculty of Physical Culture and Health, University of Szczecin, Al. Piastów 40B, Block 6, 71-065 Szczecin, Poland
| | - Irena Ramik-Mażewska
- Institute of Pedagogy, University of Szczecin, ul. Ogińskiego 16/17, 71-415 Szczecin, Poland
| |
Collapse
|
4
|
Visontay R, Squeglia LM, Sunderland M, Devine EK, Byrne H, Mewton L. Enhancing causal inference in population-based neuroimaging data in children and adolescents. Dev Cogn Neurosci 2024; 70:101465. [PMID: 39447451 PMCID: PMC11541429 DOI: 10.1016/j.dcn.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Recent years have seen the increasing availability of large, population-based, longitudinal neuroimaging datasets, providing unprecedented capacity to examine brain-behavior relationships in the neurodevelopmental context. However, the ability of these datasets to deliver causal insights into brain-behavior relationships relies on the application of purpose-built analysis methods to counter the biases that otherwise preclude causal inference from observational data. Here we introduce these approaches (i.e., propensity score-based methods, the 'G-methods', targeted maximum likelihood estimation, and causal mediation analysis) and conduct a review to determine the extent to which they have been applied thus far in the field of developmental cognitive neuroscience. We identify just eight relevant studies, most of which employ propensity score-based methods. Many approaches are entirely absent from the literature, particularly those that promote causal inference in settings with complex, multi-wave data and repeated neuroimaging assessments. Causality is central to an etiological understanding of the relationship between the brain and behavior, as well as for identifying targets for prevention and intervention. Careful application of methods for causal inference may help the field of developmental cognitive neuroscience approach these goals.
Collapse
Affiliation(s)
- Rachel Visontay
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, Sydney, Australia.
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, USA
| | - Matthew Sunderland
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Emma K Devine
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Hollie Byrne
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Louise Mewton
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Ygael N, Zangen A. Modulation of Alcohol Use Disorder by Brain Stimulation. Curr Top Behav Neurosci 2024. [PMID: 39039357 DOI: 10.1007/7854_2024_487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Currently available therapeutic modalities for alcohol use disorder (AUD) produce limited effect sizes or long-term compliance. Recent methods that were developed to modulate brain activity represent potential novel treatment options. Various methods of brain stimulation, when applied repeatedly, can induce long-term neurobiological, behavioral, and cognitive modifications. Recent studies in alcoholic subjects indicate the potential of brain stimulation methods to reduce alcohol craving, consumption, and relapse. Specifically, deep brain stimulation (DBS) of the nucleus accumbens or non-surgical stimulation of the dorsolateral prefrontal cortex (PFC) or medial PFC and anterior cingulate cortex using transcranial magnetic stimulation (TMS) has shown clinical benefit. However, further preclinical and clinical research is needed to establish understanding of mechanisms and the treatment protocols of brain stimulation for AUD. While efforts to design comparable apparatus in rodents continue, preclinical studies can be used to examine targets for DBS protocols, or to administer temporal patterns of pulsus similar to those used for TMS, to more superficial targets through implanted electrodes. The clinical field will benefit from studies with larger sample sizes, higher numbers of stimulation sessions, maintenance sessions, and long follow-up periods. The effect of symptoms provocation before and during stimulation should be further studied. Larger studies may have the power to explore predictive factors for the clinical outcome and thereby to optimize patient selection and eventually even develop personalization of the stimulation parameters.
Collapse
Affiliation(s)
- Noam Ygael
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheva, Israel
| | - Abraham Zangen
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheva, Israel.
| |
Collapse
|
6
|
Chan YH, Chang HM, Lu ML, Goh KK. Targeting cravings in substance addiction with transcranial direct current stimulation: insights from a meta-analysis of sham-controlled trials. Psychiatry Res 2024; 331:115621. [PMID: 38043411 DOI: 10.1016/j.psychres.2023.115621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Addiction is a substantial health concern; craving-the core symptom of addiction-is strongly associated with relapse. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that reduces cravings by altering cortical excitability and connectivity in brain regions. This systematic review and meta-analysis was conducted (following the PRISMA guidelines) to evaluate the efficacy of tDCS in reducing cravings for substances. Our analysis included 43 randomized, sham-controlled trials involving 1,095 and 913 participants receiving tDCS and sham stimulation, respectively. We analyzed the changes in craving scores and found that tDCS led to a moderate reduction in cravings compared with the sham effects. This effect was particularly pronounced when bilateral stimulation was used, the anodal electrode was placed on the right dorsolateral prefrontal cortex, current intensities ranged from 1.5 to 2 mA, stimulation sessions lasted 20 minutes, and the electrodes size was ≥35 cm². Notably, tDCS effectively reduced cravings for opioids, methamphetamine, cocaine, and tobacco but not for alcohol or cannabis. Our findings indicate tDCS as a promising, noninvasive, and low-risk intervention for reducing cravings for opioids, methamphetamine, cocaine, and tobacco. Additional studies are warranted to refine stimulation parameters and evaluate the long-term efficacy of tDCS in managing substance cravings.
Collapse
Affiliation(s)
- Yi-Hsun Chan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hu-Ming Chang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kah Kheng Goh
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan; The Innovative and Translational Research Center for Brain Consciousness, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Del Mauro L, Vergallito A, Gattavara G, Juris L, Gallucci A, Vedani A, Cappelletti L, Farneti PM, Romero Lauro LJ. Betting on Non-Invasive Brain Stimulation to Treat Gambling Disorder: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:698. [PMID: 37190663 PMCID: PMC10136786 DOI: 10.3390/brainsci13040698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Gambling disorder (GD) is a behavioral addiction that severely impacts individuals' functioning, leading to high socioeconomic costs. Non-invasive brain stimulation (NiBS) has received attention for treating psychiatric and neurological conditions in recent decades, but there is no recommendation for its use for GD. Therefore, this study aimed to systematically review and analyze the available literature to determine the effectiveness of NiBS in treating GD. Following the PRISMA guidelines, we screened four electronic databases up to July 2022 and selected relevant English-written original articles. We included ten papers in the systematic review and seven in the meta-analysis. As only two studies employed a sham-controlled design, the pre-post standardized mean change (SMCC) was computed as effect size only for real stimulation. The results showed a significant effect of NiBS in reducing craving scores (SMCC = -0.69; 95% CI = [-1.2, -0.2], p = 0.010). Moreover, considering the GD's frequent comorbidity with mood disorders, we ran an exploratory analysis of the effects of NiBS on depressive symptoms, which showed significant decreases in post-treatment scores (SMCC = -0.71; 95% CI = [-1.1, -0.3], p < 0.001). These results provide initial evidence for developing NiBS as a feasible therapy for GD symptoms but further comprehensive research is needed to validate these findings. The limitations of the available literature are critically discussed.
Collapse
Affiliation(s)
- Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
- Fondazione Eris Onlus, 20134 Milano, Italy
| | - Alessandra Vergallito
- Department of Psychology & Neuromi, University of Milano-Bicocca, 20126 Milano, Italy
| | - Gaia Gattavara
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
| | | | - Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Anna Vedani
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
| | | | | | | |
Collapse
|
8
|
Liu XQ, Ji XY, Weng X, Zhang YF. Artificial intelligence ecosystem for computational psychiatry: Ideas to practice. World J Meta-Anal 2023; 11:79-91. [DOI: 10.13105/wjma.v11.i4.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
|
9
|
Tikka SK, Godi SM, Siddiqui MA, Garg S. Evidence from Indian studies on safety and efficacy of therapeutic transcranial magnetic stimulation across neuropsychiatric disorders- A systematic review and meta-analysis. Indian J Psychiatry 2023; 65:18-35. [PMID: 36874512 PMCID: PMC9983459 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_572_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 12/11/2022] [Indexed: 01/13/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is potentially effective as an augmentation strategy in the treatment of many neuropsychiatric conditions. Several Indian studies have been conducted in this regard. We aimed to quantitatively synthesize evidence from Indian studies assessing efficacy and safety of rTMS across broad range of neuropsychiatric conditions. Fifty two studies- both randomized controlled and non-controlled studies were included for a series of random-effects meta-analyses. Pre-post intervention effects of rTMS efficacy were estimated in "active only" rTMS treatment arms/groups and "active vs sham" (sham-controlled) studies using pooled Standardized Mean Differences (SMDs). The outcomes were 'any depression', depression in unipolar/bipolar depressive disorder, depression in obsessive compulsive disorder (OCD), depression in schizophrenia, schizophrenia symptoms (positive, negative, total psychopathology, auditory hallucinations and cognitive deficits), obsessive compulsive symptoms of OCD, mania, craving/compulsion in substance use disorders (SUDs) and migraine (headache severity and frequency). Frequencies and odds ratios (OR) for adverse events were calculated. Methodological quality of included studies, publication bias and sensitivity assessment for each meta-analyses was conducted. Meta-analyses of "active only" studies suggested a significant effect of rTMS for all outcomes, with moderate to large effect sizes, at both end of treatment as well as at follow-up. However, except for migraine (headache severity and frequency) with large effect sizes at end of treatment only and craving in alcohol dependence where moderate effect size at follow-up only, rTMS was not found to be effective for any outcome in the series of "active vs sham" meta-analyses. Significant heterogeneity was seen. Serious adverse events were rare. Publication bias was common and the sham controlled positive results lost significance in sensitivity analysis. We conclude that rTMS is safe and shows positive results in 'only active' treatment groups for all the studied neuropsychiatric conditions. However, the sham-controlled evidence for efficacy is negative from India. Conclusion rTMS is safe and shows positive results in "only active" treatment groups for all the studied neuropsychiatric conditions. However, the sham-controlled evidence for efficacy is negative from India.
Collapse
Affiliation(s)
- Sai Krishna Tikka
- Department of Psychiatry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Sangha Mitra Godi
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - M Aleem Siddiqui
- Department of Psychiatry, Era’s Lucknow Medical College, Lucknow, Uttar Pradesh, India
| | - Shobit Garg
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| |
Collapse
|
10
|
Noël X. A critical perspective on updating drug memories through the integration of memory editing and brain stimulation. Front Psychiatry 2023; 14:1161879. [PMID: 37124256 PMCID: PMC10140428 DOI: 10.3389/fpsyt.2023.1161879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Addiction is a persistent, recurring condition characterized by repeated relapses despite the desire to control drug use or maintain sobriety. The attainment of abstinence is hindered by persistent maladaptive drug-associated memories, which drive drug-seeking and use behavior. This article examines the preliminary evidence supporting the combination of non-invasive brain stimulation (NIBS) techniques and memory editing (or reconsolidation) interventions as add-on forms of treatment for individuals with substance-related disorders (SUD). Studies have shown that NIBS can modestly reduce drug use and craving through improved cognitive control or other undetermined reasons. Memory reconsolidation, a process by which a previously consolidated memory trace can be made labile again, can potentially erase or significantly weaken SUD memories underpinning craving and the propensity for relapse. This approach conveys enthusiasm while also emphasizing the importance of managing boundary conditions and null results for interventions found on fear memory reconsolidation. Recent studies, which align with the state-dependency and activity-selectivity hypotheses, have shown that the combination of NIBS and behavioral interventions holds promise for treating SUD by reducing self-reported and physiological aspects of craving. Effective long-term outcomes for this procedure require better identification of critical memories, a deeper understanding of the brain mechanisms underlying SUD and memory reconsolidation and overcoming any boundary conditions of destabilized memories. This will enable the procedure to be personalized to the unique needs of individual patients.
Collapse
Affiliation(s)
- Xavier Noël
- Laboratoire de Psychologie Médicale et d’Addictologie, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- *Correspondence: Xavier Noël,
| |
Collapse
|
11
|
Dougherty JW, Baron D. Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16082. [PMID: 36498156 PMCID: PMC9735488 DOI: 10.3390/ijerph192316082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Substance use, misuse and use disorders continue to be major problems in society as a whole and athletes are certainly not exempt. Substance use has surrounded sports since ancient times and the pressures associated with competition sometimes can increase the likelihood of use and subsequent misuse. The addiction field as a whole has very few answers to how to prevent and secondarily treat substance use disorders and the treatments overall do not necessarily agree with the role of being an athlete. With concerns for side effects that may affect performance coupled with organizational rules and high rates of recidivism in the general population, newer treatments must be investigated. Prevention strategies must continue to be improved and more systems need to be in place to find and treat any underlying causes leading to these behaviors. This review attempts to highlight some of the data regarding the field of substance misuse and addiction in the athletic population as well as explore possible future directions for treatment including Neuromodulation methods and Ketamine. There is a need for more rigorous, high-quality studies to look at addiction as a whole and in particular how to approach this vulnerable subset of the population.
Collapse
Affiliation(s)
- John W. Dougherty
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Baron
- Office of the President, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Petit B, Dornier A, Meille V, Demina A, Trojak B. Non-invasive brain stimulation for smoking cessation: a systematic review and meta-analysis. Addiction 2022; 117:2768-2779. [PMID: 35470522 DOI: 10.1111/add.15889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Non-invasive brain stimulation (NIBS) methods have showed promising results for the treatment of tobacco use disorder, but little is known about the efficacy of NIBS on sustained tobacco abstinence. We aimed to assess its effectiveness for long-term smoking cessation. METHODS Systematic review and meta-analysis of randomized controlled trials (RCT). PubMed, Cochrane library, Embase, PsycINFO and clinical trials registries were systematically searched for relevant studies up to May 2021. Relevant studies included adult smokers seeking smoking cessation, included in an RCT using NIBS [specifically repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS)], and with follow-up of more than 4 weeks. There were no restrictions on location. Abstinence rates in the active NIBS groups were compared with abstinence rates in sham NIBS or in usual treatment groups, from 4 weeks to 12 months following the quit attempt. Smoking abstinence was measured on an intention-to-treat basis and we used risk ratios (RRs) as measures of effect size. RESULTS Seven studies were included (n = 699 patients). In all included studies, the control groups were receiving sham NIBS and only data from 3 to 6 months were analysable. By pooling the seven included studies, the RR of sustained abstinence of any form of NIBS relative to sham NIBS was 2.39 [95% confidence interval (CI) = 1.26-4.55; I2 = 40%]. Subgroup analyses found that the RR was even higher when excitatory rTMS was used on the left dorsolateral prefrontal cortex (RR = 4.34; 95% CI = 1.69-11.18; I2 = 0%) or when using deep rTMS targeting the lateral prefrontal cortex and insula bilaterally (RR = 4.64; 95% CI = 1.61-13.39; I2 = 0%). A high risk of bias was found in four included studies. We also determined, using grades of recommendation, assessment, development and evaluation, that overall there was a low level of confidence in the results. CONCLUSION Non-invasive brain stimulation (NIBS) may improve smoking abstinence rates from 3 to 6 months after quitting smoking, compared with sham NIBS or usual treatment.
Collapse
Affiliation(s)
- Benjamin Petit
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Alexandre Dornier
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Vincent Meille
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Anastasia Demina
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Benoit Trojak
- Department of Addictology, University Hospital of Dijon, Dijon, France.,University of Burgundy, Cognition, Action et Plasticité Sensorimotrice, Dijon, France
| |
Collapse
|
13
|
Bollen Z, Dormal V, Maurage P. How Should Transcranial Direct Current Stimulation be Used in Populations With Severe Alcohol Use Disorder? A Clinically Oriented Systematic Review. Clin EEG Neurosci 2022; 53:367-383. [PMID: 33733871 DOI: 10.1177/15500594211001212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and rationale. Severe alcohol use disorder (SAUD) is a major public health concern, given its massive individual, interpersonal, and societal consequences. The available prevention and treatment programs have proven limited effectiveness, as relapse rates are still high in this clinical population. Developing effective interventions reducing the appearance and persistence of SAUD thus constitutes an experimental and clinical priority. Among the new therapeutic approaches, there is a growing interest for noninvasive neuromodulation techniques, and particularly for transcranial direct current stimulation (tDCS) as an adjunctive treatment in neuropsychiatric disorders, including SAUD. Methods. We propose a systematic review, based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, evaluating the available evidence on the effectiveness of tDCS to improve clinical interventions in SAUD. Results. We provide an integrative overview of studies applying tDCS in clinical populations with SAUD, together with a standardized methodological quality assessment. We show that the currently available data remain inconsistent. Some data suggested that tDCS can (1) reduce craving, relapse or alcohol-cue reactivity and (2) improve cognitive control and inhibition. However, other studies did not observe any beneficial effect of tDCS in SAUD. Conclusions. Capitalizing on the identified strengths and shortcomings of available results, we present evidence-based clinical guidelines to integrate tDCS in current clinical settings and to combine it with neurocognitive training.
Collapse
Affiliation(s)
- Zoé Bollen
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Science Research Institute, 83415UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Dormal
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Science Research Institute, 83415UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Science Research Institute, 83415UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Song S, Zilverstand A, Gui W, Pan X, Zhou X. Reducing craving and consumption in individuals with drug addiction, obesity or overeating through neuromodulation intervention: a systematic review and meta-analysis of its follow-up effects. Addiction 2022; 117:1242-1255. [PMID: 34514666 DOI: 10.1111/add.15686] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Non-invasive brain stimulation has shown potential in clinical applications aiming at reducing craving and consumption levels in individuals with drug addiction or overeating behaviour. However, it is unclear whether these intervention effects are maintained over time. This study aimed to measure the immediate, short- and long-term effects of excitatory transcranial direct current stimulation (tDCS) and high-frequency repetitive transcranial magnetic stimulation (rTMS) targeting at dorsolateral prefrontal cortex (dlPFC) in people with drug addiction or overeating. METHODS A systematic review and random effects meta-analysis. We included 20 articles (total of 22 studies using randomized controlled trials: 3 alcohol dependence, 3 drug dependence, 12 smoking, 4 overeating; total: 720 participants) from January 2000 to June 2020, which reported at least one follow-up assessment of craving, consumption or abstinence levels after the intervention. We compared effects of active versus sham stimulation immediately after the intervention and at the last follow-up assessment, as compared with baseline. RESULTS Excitatory neuromodulation of dlPFC activity reduced craving and consumption immediately after the intervention (craving: g = 0.734, CI = 0.447-1.021, P < 0.001; consumption: g = 0.527, CI = 0.309-0.745; P < 0.001), as well as during short-, mid- and long-term abstinence (craving: g = 0.677, CI = 0.440-0.914, P < 0.001; consumption: g = 0.445, CI = 0.245-0.645, P < 0.001; abstinence levels: g = 0.698, CI = 0.433-0.963, P < 0.001; average time of follow-up: 84 ± 83 days after last stimulation). Additional analysis demonstrated that the intervention effects were sustained in all populations studied (food, nicotine, alcohol or drug abuse) and with both stimulation techniques used (rTMS, tDCS). Interventions targeting at the left (vs right) hemisphere may be more effective. CONCLUSIONS Excitatory neuromodulation targeting the dorsolateral prefrontal cortex appears to lead to a sustained reduction of craving and consumption in individuals with addiction or overeating behaviour.
Collapse
Affiliation(s)
- Sensen Song
- Department of Psychology, School of Humanities, Tongji University, Shanghai, China
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Wenjun Gui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Pan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Xiaolin Zhou
- Department of Psychology, School of Humanities, Tongji University, Shanghai, China
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Khaleghi A, Mohammadi MR, Shahi K, Nasrabadi AM. Computational Neuroscience Approach to Psychiatry: A Review on Theory-driven Approaches. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:26-36. [PMID: 35078946 PMCID: PMC8813324 DOI: 10.9758/cpn.2022.20.1.26] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
Translating progress in neuroscience into clinical benefits for patients with psychiatric disorders is challenging because it involves the brain as the most complex organ and its interaction with a complex environment and condition. Dealing with such complexity requires powerful techniques. Computational neuroscience approach to psychiatry integrates multiple levels and types of simulation, analysis and computation according to the different types of computational models to enhance comprehending, prediction and treatment of psychiatric disorder. This approach comprises two approaches: theory-driven and data-driven. In this review, we focus on recent advances in theory-driven approaches that mathematically and mechanistically examine the relationships between disorder-related changes and behavior at different level of brain organization. We discuss recent progresses in computational neuroscience models that relate to psychiatry and show how principles of neural computational modeling can be employed to explain psychopathology.
Collapse
Affiliation(s)
- Ali Khaleghi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kian Shahi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
rTMS Reduces Craving and Alcohol Use in Patients with Alcohol Use Disorder: Results of a Randomized, Sham-Controlled Clinical Trial. J Clin Med 2022; 11:jcm11040951. [PMID: 35207224 PMCID: PMC8878126 DOI: 10.3390/jcm11040951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Current evidence-based treatments for alcohol use disorder (AUD) are moderately effective. Studies testing repetitive transcranial magnetic stimulation (rTMS) in AUD commonly apply a limited number of rTMS sessions with different rTMS settings, showing inconsistent effects on craving for alcohol. This study tested the efficacy of a robust rTMS protocol on craving and alcohol use. (2) Methods: In a single-blind randomized controlled trial in recently detoxified patients with AUD, ten days of high-frequency rTMS over the right dorsolateral prefrontal cortex on top of treatment as usual (n = 14) was compared with sham rTMS (n = 16). Outcome measures were alcohol craving and use over a follow-up period of one year. Analysis was performed by means of repeated measures multivariate analysis of variance. (3) Results: The results showed a main group-by-time interaction effect on craving (Wilks’ Λ = 0.348, F (12, 17) = 2.654, p = 0.032) and an effect of group on alcohol use (Wilk’s Λ = 0.44, F (6, 23) = 4.9, p = 0.002), with lower alcohol craving and use in the group with active rTMS compared to the control group. Differences in craving between groups were most prominent three months after treatment. At 12 months follow-up, there was no effect of rTMS on craving or abstinence. (4) Conclusions: This small-scale randomized controlled trial showed the efficacy of high-frequency rTMS over the right dlPFC diminished alcohol craving and use in recently detoxified patients with AUD during the first months after detoxification. These findings suggest that rTMS might be an effective add-on in treating patients with AUD and warrant replication in future large-scale studies.
Collapse
|
17
|
Gay A, Cabe J, De Chazeron I, Lambert C, Defour M, Bhoowabul V, Charpeaud T, Tremey A, Llorca PM, Pereira B, Brousse G. Repetitive Transcranial Magnetic Stimulation (rTMS) as a Promising Treatment for Craving in Stimulant Drugs and Behavioral Addiction: A Meta-Analysis. J Clin Med 2022; 11:624. [PMID: 35160085 PMCID: PMC8836499 DOI: 10.3390/jcm11030624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Addiction is a mental disorder with limited available treatment options. The therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) on it, by targeting craving in particular, has been explored with heterogenous results. This meta-analysis uses updated evidence to assess overall rTMS efficacy on craving, differential effects between addiction types clustered into three groups (depressant (alcohol, cannabis, opiate), stimulant (nicotine, cocaine, methamphetamine), and behavioral addiction (gambling, eating disorder)), and stimulation settings. Studies on substance use, gambling, and eating disorders are included, with unrestricted stimulation settings, by searching the PubMed, Embase, PsycINFO, and Cochrane databases up to 30 April 2020. A total of 34 eligible studies (42 units of analysis) were identified. Because of highly significant heterogeneity in primary results, a sensitivity analysis was performed on a remaining sample of 26 studies (30 units of analysis). Analyses performed using random effects model revealed a small effect size favoring active rTMS over shamTMS stimulation in the reduction in craving. We found a significant difference between addiction types, with a persistent small effect only for stimulant and behavioral groups. In these groups we found no difference between the different combinations of target and frequency of stimulation, but a significant correlation between number of sessions and craving reduction. In conclusion, efficacy of rTMS on craving in stimulant and behavioral addiction was highlighted, but recommendations on optimal stimulation settings and its clinical application await further research.
Collapse
Affiliation(s)
- Aurélia Gay
- University Department of Psychiatry and Addiction, CHU St-Etienne, CEDEX 2, 42055 Saint-Étienne, France; (M.D.); (V.B.)
- TAPE Laboratory, EA7423, Jean Monnet University, 42100 Saint-Étienne, France
| | - Julien Cabe
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| | - Ingrid De Chazeron
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| | - Céline Lambert
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (C.L.); (B.P.)
| | - Maxime Defour
- University Department of Psychiatry and Addiction, CHU St-Etienne, CEDEX 2, 42055 Saint-Étienne, France; (M.D.); (V.B.)
| | - Vikesh Bhoowabul
- University Department of Psychiatry and Addiction, CHU St-Etienne, CEDEX 2, 42055 Saint-Étienne, France; (M.D.); (V.B.)
| | - Thomas Charpeaud
- Service d’Addictologie et Pathologies Duelles, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (T.C.); (A.T.)
| | - Aurore Tremey
- Service d’Addictologie et Pathologies Duelles, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (T.C.); (A.T.)
| | - Pierre-Michel Llorca
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (C.L.); (B.P.)
| | - Georges Brousse
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| |
Collapse
|
18
|
Panitz M, Deserno L, Kaminski E, Villringer A, Sehm B, Schlagenhauf F. OUP accepted manuscript. Cereb Cortex Commun 2022; 3:tgac006. [PMID: 35233532 PMCID: PMC8874878 DOI: 10.1093/texcom/tgac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is thought to be central for flexible behavioral adaptation. However, the causal relationship between mPFC activity and this behavior is incompletely understood. We investigated whether transcranial direct current stimulation (tDCS) over the mPFC alters flexible behavioral adaptation during reward-based decision-making, targeting Montreal Neurological Institute (MNI) coordinates X = −8, Y = 62, Z = 12, which has previously been associated with impaired behavioral adaptation in alcohol-dependent patients. Healthy human participants (n = 61) received either anodal (n = 30) or cathodal (n = 31) tDCS versus sham tDCS while performing a reversal learning task. To assess the mechanisms of reinforcement learning (RL) underlying our behavioral observations, we applied computational models that varied with respect to the updating of the unchosen choice option. We observed that anodal stimulation over the mPFC induced increased choice switching after punishments compared with sham stimulation, whereas cathodal stimulation showed no effect on participants’ behavior compared with sham stimulation. RL revealed increased updating of the unchosen choice option under anodal as compared with sham stimulation, which accounted well for the increased tendency to switch after punishments. Our findings provide a potential model for tDCS interventions in conditions related to flexible behavioral adaptation, such as addiction.
Collapse
Affiliation(s)
- Martin Panitz
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Corresponding author: Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103 Leipzig, Germany.
| | - Lorenz Deserno
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, 97080 Würzburg, Germany
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01187 Dresden, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Human Movement Neurosciences, Faculty of Sports Science, University of Leipzig, Leipzig 04109, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Bernhard Sehm
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Florian Schlagenhauf
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
19
|
Transcranial direct current stimulation combined with alcohol cue inhibitory control training reduces the risk of early alcohol relapse: A randomized placebo-controlled clinical trial. Brain Stimul 2021; 14:1531-1543. [PMID: 34687964 DOI: 10.1016/j.brs.2021.10.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Approximately half of all people with alcohol use disorder (AUD) relapse into alcohol reuse in the next few weeks after a withdrawal treatment. Brain stimulation and cognitive training represent recent forms of complementary interventions in the context of AUD. OBJECTIVE To evaluate the clinical efficacy of five sessions of 2 mA bilateral transcranial direct current stimulation (tDCS) for 20 min over the dorsolateral prefrontal cortex (DLPFC) (left cathodal/right anodal) combined with alcohol cue inhibitory control training (ICT) as part of rehabilitation. The secondary outcomes were executive functioning (e.g. response inhibition) and craving intensity, two mechanisms strongly related to abstinence. METHODS A randomized clinical trial with patients (n = 125) with severe AUD at a withdrawal treatment unit. Each patient was randomly assigned to one of four conditions, in a 2 [verum vs. sham tDCS] x 2 [alcohol cue vs. neutral ICT] factorial design. The main outcome of treatment was the abstinence rate after two weeks or more (up to one year). RESULTS Verum tDCS improved the abstinence rate at the 2-week follow-up compared to the sham condition, independently of the training condition (79.7% [95% CI = 69.8-89.6] vs. 60.7% [95% CI = 48.3-73.1]; p = .02). A priori contrasts analyses revealed higher abstinence rates for the verum tDCS associated with alcohol cue ICT (86.1% [31/36; 95% CI = 74.6-97.6]) than for the other three conditions (64% [57/89; 95% CI = 54-74]). These positive clinical effects on abstinence did not persist beyond two weeks after the intervention. Neither the reduction of craving nor the improvement in executive control resulted specifically from prefrontal-tDCS and ICT. CONCLUSIONS AUD patients who received tDCS applied to DLPFC showed a significantly higher abstinence rate during the weeks following rehabilitation. When combined with alcohol specific ICT, brain stimulation may provide better clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov number NCT03447054 https://clinicaltrials.gov/ct2/show/NCT03447054.
Collapse
|
20
|
Bilateral transcranial direct current stimulation attenuated symptoms of alcohol use disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110160. [PMID: 33147505 DOI: 10.1016/j.pnpbp.2020.110160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alcohol use disorder is one of the common substance use disorders leading to mental and health problems. Despite the potential positive effects of transcranial direct current stimulation (tDCS) on symptoms of various substance use disorder, how specific tDCS protocols effectively influence on individuals with alcohol use disorder is still controversial. This systematic review and meta-analysis investigated beneficial effects of tDCS on symptoms of alcohol use disorder. METHOD Eighteen total studies met our inclusion criteria, and we used 25 total comparisons from the qualified studies for the data synthesis. We estimated effect sizes by quantifying changes in alcohol craving and consumption between active tDCS protocol and sham groups. In addition, three moderator variable analyses determined whether tDCS effects on symptoms of alcohol use disorder were different based on (a) bilateral versus unilateral tDCS protocols, (b) specific targeted regions, and (c) multiple sessions versus single session of tDCS protocols. RESULTS Random-effects model meta-analysis revealed small positive tDCS effects on alcohol craving and consumption. Specifically, bilateral tDCS protocols significantly reduced alcohol craving, and further anodal tDCS on right dorsolateral prefrontal cortex (DLPFC) and cathodal tDCS on left DLPFC revealed significant positive effects. The multiple sessions of tDCS protocols showed better effects on reducing alcohol craving. CONCLUSIONS The current findings suggested that bilateral tDCS protocols including anodal tDCS on right DLPFC and cathodal tDCS on left DLPFC with multiple sessions may effectively improve tDCS effects on symptoms of alcohol use disorder.
Collapse
|
21
|
Khaleghi A, Zarafshan H, Vand SR, Mohammadi MR. Effects of Non-invasive Neurostimulation on Autism Spectrum Disorder: A Systematic Review. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:527-552. [PMID: 33124586 PMCID: PMC7609207 DOI: 10.9758/cpn.2020.18.4.527] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by major impairments in social communication, stereotyped and ritualistic behaviors and deficits in sensory reactivity. Recently, noninvasive brain stimulation (NIBS) methods, namely transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), have been examined as possible new therapeutic options for modifying the pathological neuroplasticity involved in neuropsychiatric disorders including ASD. Therefore, we conducted a systematic review on the therapeutic uses of tDCS and repetitive TMS (rTMS) in ASD patients. A systematic search was performed on Scopus, Web of Science, PubMed, Cochrane and Embase. Original articles reporting the use of tDCS or rTMS to treat ASD were screened and studied by two researchers independently based on PRISMA guidelines. We found 32 eligible studies including 8 tDCS reports, 23 rTMS reports and one report with both tDCS and rTMS. These studies comprised 6 case-reports, 9 non-controlled trials and 17 controlled trials which assessed NIBS effects on the three cognitive, behavioral and biological dimensions in ASD. Existing evidence demonstrates that NIBS methods could be helpful for treating some dimensions of ASD such as repetitive behavior, sociability or some aspects of executive and cognitive functions. However, such evidence should be regarded with care because of the quality of original researches and serious publication bias as well as the heterogeneity of data. Further randomized, double-blind, sham-controlled trials with appropriate follow-up periods should be designed to assess the efficacy of NIBS methods for ASD treatment.
Collapse
Affiliation(s)
- Ali Khaleghi
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Zarafshan
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Safa Rafiei Vand
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
23
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
24
|
Khaleghi A, Pirzad Jahromi G, Zarafshan H, Mostafavi SA, Mohammadi MR. Effects of transcranial direct current stimulation of prefrontal cortex on risk-taking behavior. Psychiatry Clin Neurosci 2020; 74:455-465. [PMID: 32415800 DOI: 10.1111/pcn.13025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 05/10/2020] [Indexed: 01/23/2023]
Abstract
AIM Recent cognitive neuroscience research shows that noninvasive brain stimulation can modify a wide range of behaviors in healthy people. Such regulation effects on human behaviors provide new insights into the neurobiology of cognitive processes and establish causal brain-behavior relations. Here, we aimed to examine the effects of transcranial electrical stimulation (TES) of the prefrontal cortex on risk-taking. METHODS We performed a systematic search on the PubMed, Web of Science, and Cochrane databases with appropriate keywords for original studies reporting the use of TES to modulate risk-taking behavior in healthy individuals. Then, in the meta-analysis phase, a random-effects model was used to measure the pooled effect size (ES). RESULTS Twenty articles were evaluated as eligible studies, including 16 articles on transcranial direct current stimulation (tDCS), two on transcranial alternating current stimulation, one on transcranial pulsed current stimulation, and one on high-definition tDCS. A meta-analysis showed a pooled estimated standardized ES of -0.20 (95% confidence interval [CI], -0.39 to -0.01), which indicates a small ES for active tDCS over the dorsolateral prefrontal cortex (DLPFC) in comparison to sham stimulation (z = 2.31, P = 0.03) in terms of less risky behaviors. Subgroup analysis showed that there is no significant ES for bilateral DLPFC stimulation (d = -0.01; 95%CI, -0.28 to 0.26), but a significant near-medium ES for unilateral DLPFC stimulation (d = -0.41; 95%CI, -0.71 to -0.10). CONCLUSION Our findings support a significant impact of neuroregulation of the DLPFC on risk-taking behavior in healthy individuals. Unilateral noninvasive electrical stimulation of the DLPFC can result in a conservative risk-averse response style, probably through modulating plasticity of the relevant brain networks, including cortical and subcortical structures, as well as increasing subcortical dopaminergic activity.
Collapse
Affiliation(s)
- Ali Khaleghi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hadi Zarafshan
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Ali Mostafavi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|