Zhou RQ, Ji HC, Liu Q, Zhu CY, Liu R. Leveraging machine learning techniques for predicting pancreatic neuroendocrine tumor grades using biochemical and tumor markers. World J Clin Cases 2019; 7(13): 1611-1622 [PMID: 31367620 DOI: 10.12998/wjcc.v7.i13.1611]
Corresponding Author of This Article
Rong Liu, MD, PhD, Professor, School of Medicine, Nankai University; The Second Department of Hepatobiliary Surgery, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China. liurong301@126.com
Research Domain of This Article
Oncology
Article-Type of This Article
Retrospective Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Clin Cases. Jul 6, 2019; 7(13): 1611-1622 Published online Jul 6, 2019. doi: 10.12998/wjcc.v7.i13.1611
Table 1 General confusion matrix
Predicted condition
Predicted negative
Predicted positive
Condition
Condition negative
True negative
False positive
Condition positive
False negative
True positive
Table 2 Relationship between different pancreatic neuroendocrine tumor grades and clinical variables
mean ± SD
P value, vs G1
P value, vs G2
P value of binary
Gender (male / female)
s
0.3575
G1
14 / 18
G2
37 / 11
0.002
G3
4 / 7
0.668
0.008
Age
< 0.001
G1
52.47 ± 11.70
G2
49.19 ± 11.34
0.634
G3
50.00 ± 17.04
0.082
0.039
ALT
< 0.001
G1
34.95 ± 72.06
G2
33.97 ± 59.10
0.730
G3
117.02 ± 143.74
0.039
0.006
BIL
< 0.001
G1
9.15 ± 3.65
G2
12.71 ± 9.56
0.009
G3
69.63 ± 67.56
< 0.001
< 0.001
AFP
< 0.001
G1
2.27 ± 1.02
G2
3.34 ± 2.38
0.014
G3
3.47 ± 1.50
0.035
0.606
CEA
< 0.001
G1
1.51 ± 0.82
G2
2.19 ± 2.38
0.132
G3
11.77 ± 17.05
< 0.001
< 0.001
CA19-9
< 0.001
G1
9.58 ± 7.57
G2
20.46 ± 24.74
0.007
G3
37.10 ± 39.40
< 0.001
0.118
CA125
0.0146
G1
10.43 ± 5.60
G2
13.72 ± 12.22
0.039
G3
11.13 ± 4.75
0.942
0.195
CA15-3
< 0.001
G1
8.98 ± 4.34
G2
11.41 ± 5.49
0.361
G3
11.52 ± 3.80
0.585
0.318
CA72-4
< 0.001
G1
1.83 ± 1.43
G2
2.14 ± 1.50
0.217
G3
7.42 ± 7.85
< 0.001
< 0.001
Table 3 The highest F1 score, recall rate and precision rate scores of different models
F1 score
Recall rate
Precision rate
LR
0.80
0.80
0.81
SVM
0.81
0.81
0.82
Linear SVM
0.82
0.82
0.84
LDA-eigen1
0.85
0.85
0.86
LDA-lsqr1
0.85
0.85
0.86
LDA-svd
0.82
0.82
0.84
MLP
0.82
0.81
0.84
Table 4 F1 score, recall rate and precision rate of each grade in different models
Model
Grade
F1
Recall rate
Precision rate
LR
G1
0.83
0.94
0.75
G2
0.8
0.73
0.88
G3
0.73
0.73
0.73
SVM
G1
0.85
0.94
0.77
G2
0.81
0.75
0.88
G3
0.73
0.73
0.73
Linear SVM
G1
0.85
0.94
0.77
G2
0.81
0.73
0.92
G3
0.8
0.91
0.71
LDA-eigen
G1
0.85
0.94
0.77
G2
0.85
0.81
0.89
G3
0.84
0.73
1
LDA-lsqr
G1
0.85
0.94
0.77
G2
0.85
0.81
0.89
G3
0.84
0.73
1
LDA-svd
G1
0.85
0.97
0.76
G2
0.82
0.75
0.9
G3
0.76
0.73
0.8
LDA-svd
G1
0.85
0.97
0.76
G2
0.82
0.75
0.9
G3
0.76
0.73
0.8
MLP
G1
0.83
0.94
0.75
G2
0.81
0.75
0.88
G3
0.83
0.94
0.68
Citation: Zhou RQ, Ji HC, Liu Q, Zhu CY, Liu R. Leveraging machine learning techniques for predicting pancreatic neuroendocrine tumor grades using biochemical and tumor markers. World J Clin Cases 2019; 7(13): 1611-1622