Retrospective Study
Copyright ©The Author(s) 2022.
World J Clin Cases. Jan 14, 2022; 10(2): 518-527
Published online Jan 14, 2022. doi: 10.12998/wjcc.v10.i2.518
Table 1 results of 107 breast cases
Pathological results
Number of nodules
Benign
Fibroadenoma32
Adenosis18
Granulomatous mastitis3
Intraductal papilloma2
Galactocele2
Plasma cell mastitis1
Phyllodes tumor1
Sclerosing adenosis1
Nodular fasciitis1
Malignant
Invasive ductal carcinoma31
Intraductal papillary carcinoma5
Invasive lobular carcinoma4
Encapsulated papillary carcinoma2
Mucinous carcinoma1
Undifferentiated carcinoma1
Malignant phyllodes tumor1
Solid papillary carcinoma1
Table 2 Diagnostic efficiency of four diagnostic models
Inspection method
Pathology                
Susceptibility (%)
Specificity (%)
Accuracy (%)
Jordan index
Positive predictive value (%)
Negative predictive value (%)
Benign (n = 61)    
Malignant (n = 46)    
Conventional ultrasound BI-RADS classification84.7857.2174.440.519961.1185.42
Benign (n = 48)417
Malignant (n = 59)2039
AI-SONIC Breast system86.9675.4180.370.623772.7388.46
Benign (n = 52)466
Malignant (n = 53)1540
AI-SONIC Breast system combined BI-RADS classification of conventional ultrasound80.4390.1685.980.705986.0585.94
Benign (n = 64)559
Malignant (n = 43)637
Adjusted BI-RADS classification93.4867.2178.500.606968.2593.18
Benign (n = 44)413
Malignant (n = 63)2043
Table 3 BI-RADS classification distribution and risk prediction before and after adjustment
Inspection method
Biopsy rate (%)
Malignancy risk (%)
Cancer detection rate (%)
BI-RADS classification before adjustment100042.99
4A (n = 48)
4B (n = 20)
4C (n = 39)
Adjusted BI-RADS classification67.291.8761.11
3 (n = 35)
4A (n = 9)
4B (n = 20)
4C (n = 11)
5 (n = 32)