Editorial Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Cases. May 26, 2025; 13(15): 101188
Published online May 26, 2025. doi: 10.12998/wjcc.v13.i15.101188
Artificial intelligence and the impact of multiomics on the reporting of case reports
Aishwarya Boini, Davao Medical School Foundation, Davao Medical School Foundation, Davao 8000, Philippines
Vincent Grasso, Department of Computer Engineering, Department of Electrical and Computer Engineering University of New Mexico, Albuquerque, NM 87106, United States
Heba Taher, Department of Pediatric Surgery, Cairo University Hospital, Cairo 11441, Egypt
Andrew A Gumbs, Department of Minimally Invasive Digestive Surgery, Hospital Antoine Beclère, Assistance Publique-Hospitals of Paris, Clamart 92140, France
Andrew A Gumbs, Department of Surgery, University of Magdeburg, Magdeburg 39130, Saxony-Anhalt, Germany
ORCID number: Andrew A Gumbs (0000-0002-7044-5318).
Author contributions: Boini A, Grasso V, and Gumbs AA contributed to the drafting the manuscript; Gumbs AA contributed to the conceptualization of the manuscript; Boini A, Grasso V, Taher H, and Gumbs AA edited the manuscript; and all authors thoroughly reviewed and endorsed the final manuscript.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Andrew A Gumbs, MD, Department of Minimally Invasive Digestive Surgery, Hospital Antoine Beclère, Assistance Publique-Hospitals of Paris, No. 157 Rue de la Porte de Trivaux, Clamart 92140, France. aagumbs@gmail.com
Received: September 6, 2024
Revised: December 31, 2024
Accepted: January 11, 2025
Published online: May 26, 2025
Processing time: 136 Days and 16.5 Hours

Abstract

The integration of artificial intelligence (AI) and multiomics has transformed clinical and life sciences, enabling precision medicine and redefining disease understanding. Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022, with AI research tripling during this period. Multiomics fields, including genomics and proteomics, also advanced, exemplified by the Human Proteome Project achieving a 90% complete blueprint by 2021. This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting. A review of studies and case reports was conducted to evaluate AI and multiomics integration. Key areas analyzed included diagnostic accuracy, predictive modeling, and personalized treatment approaches driven by AI tools. Case examples were studied to assess impacts on clinical decision-making. AI and multiomics enhanced data integration, predictive insights, and treatment personalization. Fields like radiomics, genomics, and proteomics improved diagnostics and guided therapy. For instance, the “AI radiomics, genomics, oncopathomics, and surgomics project” combined radiomics and genomics for surgical decision-making, enabling preoperative, intraoperative, and postoperative interventions. AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data. AI and multiomics enable standardized data analysis, dynamic updates, and predictive modeling in case reports. Traditional reports often lack objectivity, but AI enhances reproducibility and decision-making by processing large datasets. Challenges include data standardization, biases, and ethical concerns. Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine. AI and multiomics integration is revolutionizing clinical research and practice. Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential. Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.

Key Words: Artificial intelligence; Multiomics; Precision medicine; Genomics; Proteomics; Metabolomics; Radiomics; Pathomics; Surgomics; Predictive modeling

Core Tip: The integration of artificial intelligence with multiomics is redefining case reporting by enabling comprehensive molecular profiling, predictive analytics, and real-time updates. Artificial intelligence-driven analysis of genomics, proteomics, and metabolomics enhances diagnostic precision, treatment personalization, and disease prediction. This transformative approach addresses limitations of traditional case reports by standardizing data interpretation and uncovering actionable insights. Despite challenges like data integration and ethical concerns, this paradigm shift is set to revolutionize case reporting, paving the way for precision medicine and improved patient outcomes.



INTRODUCTION

There has been a slow and steady increase in the total global output of scientific publications between 2012 and 2022 of approximately 2.1 million to 3.3 million respectively. China (330000 to 900000) and India (78000 to 207000) experienced considerable increases in their scientific publication outputs between these dates. As of 2022, China was responsible for about 23% of the world’s total with the United States at about 14%[1]. According to a recent Stanford University publication, between 2010 and 2022, the total number of global English-language artificial intelligence (AI) publications nearly tripled from about 88000 to 240000[2]. The entire ecosystem of multiomics has likewise undergone considerable expansion during this period of time witnessed by the launch of the human proteome project in 2010 that by 2021 achieved 90% complete high-stringency human proteome blueprint as an example[3]. The convergence of AI with multiomics is positioned to empower and enable an entire new realm of clinical and life sciences research not possible before. This integration does illuminate a pathway towards an eventual state of fully bespoke precision medicine. However, despite the opportunities presented, there remain newfound challenges to the overall scientific publishing community concerning how best to articulate the utilization of AI and multiomics within clinical and life science related research. Interestingly, the concept that the whole is greater than the sum of its parts is an old one and discussed by Aristotle[4] in his Nicomachean Ethics. However, despite these advancements, several gaps remain in fully integrating AI and multiomics into clinical practice. These include challenges in data standardization across omics platforms, biases in AI models, difficulty translating multiomics data into actionable clinical insights, ethical and regulatory concerns, and issues with reproducibility in clinical case reports. Overcoming these barriers is crucial to realizing the full potential of these technologies in enhancing precision medicine.

SEARCH METHODOLOGY

This study involved reviewing existing literature and case reports on the use of AI and multiomics in clinical practice. We searched databases like PubMed and Scopus using terms such as “AI in healthcare”, “multiomics”, and “precision medicine” to dentify relevant studies published in recent years. We focused on research that highlighted the integration of genomics, proteomics, radiomics, and other omics data in clinical decision-making and case reporting. Case examples were used to demonstrate how AI and multiomics enhance diagnostic accuracy, treatment personalization, and prediction. The study also examined AI tools, including machine learning and deep learning, to understand their role in analyzing complex datasets and improving clinical outcomes.

EXPANDING MEDICAL INSIGHTS WITH MULTIOMICS

Multiomics refers to analysis of data from various “omics” fields of study, such as radiomics, genomics, oncopathomics, surgomics, metabolomics, proteomics and various others. By integrating data from these fields of study, clinicians will possess an enhanced comprehension of underlying mechanisms of disease[5,6]. In medical research, genomics is the most advanced of the omics areas. Genomics is concerned with identifying genetic polymorphisms linked to disease, therapy response, and future patient prognosis. Proteomics measures peptide abundance, alteration, and interaction. Technological advances enable protein analysis and quantification via high-throughput investigations of thousands of proteins in cells or blood. Metabolomics counts a variety of small molecule types at the same time, including amino acids, fatty acids, carbohydrates, and other cellular metabolic products[5].

Conversely, there are a few emerging omics fields that could be useful in surgical decision-making, such as surgomics, which analyses all available patient data that influences surgical outcomes. As the field of surgomics continues to evolve, its integration into routine clinical practice holds tremendous potential to reshape the future of surgical interventions[6]. Radiomics is the quantitative measurement of texture and shape qualities that are retrieved from imaging modalities utilizing sophisticated image processing and computer vision algorithms. Pathomics, also known as quantitative histomorphometric analysis, is the processing and extraction of computer-derived measurements from digital images of histopathology. Sophisticated pathomics offers the ability to “unlock” additional informative sub-visual features regarding tumors, even if pathologists can anticipate cancer behavior to some extent by visually examining routine histopathology slides of tumors[7].

In this regard, the “AI, radiomics, genomics, oncopathomics, and surgomics project” was initiated where the integration of patient data from surgomics, radiomics, pathomics, and genomics emerged with the goal of enhancing surgical decision-making. The capability of AI via its machine learning activities to processes voluminous data sets, recognize minute patterns, and explore complex relationships, far exceeds the capabilities of conventional data analysis. The aim of the “AI, radiomics, genomics, oncopathomics, and surgomics project” is to create AI algorithms that will allow medical professionals to provide cancer patients with precise, individualized therapeutic treatments within all 3 surgical phases including the preoperative, intraoperative, and postoperative[6]. A bespoke therapeutic plan based on the individual’s entire tumor genomic profile could be developed by combining radiologic data from all cross-sectional images of tumors with whole genomic sequencing (WGS) of tumor tissue, chemotherapy, immunotherapy, and radiation therapy regimen data with therapeutic responses, and long-term survival data. This combination would be made possible by a machine learning algorithm and a deep learning architecture[8].

HOW AI AND MULTIOMICS WILL IMPACT CASE REPORTING?

Traditional case reports focus on clinical observations, diagnostic tests, treatments, and outcomes. While valuable, these reports are often limited by the data available and the subjective interpretation of the clinician. AI and multiomics will significantly broaden the scope of future case reports.

Enhanced data integration

Future case reports will include detailed molecular profiles, offering a richer understanding of the disease process. This means that case reports will go beyond clinical observations to include data from genomics, proteomics, and metabolomics, providing a comprehensive view of the patient’s condition[5]. For example, in a case where a 9-month-old boy with diarrhea and proteinuria, alongside growth retardation, delayed motor milestones, and multiple systemic symptoms, was diagnosed through integrated clinical and genetic analysis[9]. Despite the absence of common nephrotic syndrome features like edema or fever, his symptoms led to genetic testing using next-generation sequencing. This approach revealed a de novo hemizygous variant, c.704C>T (p.Pro235 Leu), in the GATA3 gene. By combining detailed clinical observations with genomic data, the diagnosis of a genetic disorder linked to nephrotic syndrome and other health issues was confirmed, demonstrating the power of data integration and genomics in identifying the underlying genetic cause[9].

Predictive power

AI-driven analyses can provide predictive insights based on multiomics data. For example, AI could forecast the likelihood of disease recurrence or suggest the most effective treatment options based on patterns identified in similar cases[10]. Postoperative delirium (POD) in elderly individuals following surgery is a complex issue influenced by age-related vulnerabilities, surgical stressors, and recovery challenges. In a systematic review highlighted the increased prevalence of POD in this demographic, underscoring the need for tailored perioperative care[11]. Integrating WGS can predict genetic variants linked to increased risk for POD by analyzing genes involved in neurotransmitter systems, inflammation responses, and anesthetic metabolism. Combining WGS with AI-driven analyses of multiomics data - including genomics, transcriptomics, proteomics, and metabolomics - can enhance the prediction of POD risk. Machine learning algorithms process these complex datasets to uncover patterns and biomarkers, improving predictive accuracy and offering insights into the biological mechanisms underlying POD. This integrated approach enables more personalized risk assessments and targeted interventions[12].

Standardization and objectivity

AI can help standardize the interpretation of multiomics data, reducing the subjectivity often present in traditional case reports. This consistency in analysis will lead to more reliable and comparable results, risk stratification, prognostication, prediction and clinical decision making across different case studies[13]. A 75-year-old man with a history of liver cirrhosis and mixed left liver cancer presented with black stool for 4 days[13]. He had undergone surgery and transcatheter arterial chemoembolization for left liver cancer and had been stable with no tumor recurrence. On examination, he showed signs of abdominal distension and varicose veins. Laboratory tests indicated anemia and a positive fecal occult blood test. Endoscopy revealed esophageal varices and a type IIb lesion in the esophagus with high-grade intraepithelial neoplasia. The final diagnosis was bleeding from superficial esophageal cancer coexisting with esophageal varices. Treatment involved endoscopic sclerotherapy, endoscopic band ligation, and endoscopic submucosal dissection for the esophageal lesion. Postoperative follow-up showed successful recovery with no recurrence of bleeding. If computer vision analysis had been used, it could have significantly enhanced the management of bleeding risks[14]. By employing advanced algorithms to analyze endoscopic images, the system could have identified subtle visual cues such as the color, size, and texture of the varices and lesions more precisely. This real-time analysis would have provided better risk assessment, enabling more accurate prediction of bleeding potential and prioritization of interventions. As a result, computer vision could have improved the timeliness and effectiveness of treatments, potentially reduced complications and enhancing patient outcomes[15].

Dynamic, real-time updates

Multiomics data can be continually analyzed by AI, enabling real-time updates to case reports. The case report can be updated with the most recent information as a patient’s condition changes, giving physicians access to the most up-to-date information. Machine-learning techniques can manage big and complicated datasets, which makes them appropriate for use in precision medicine applications. To guide treatment options, current methods automate data analysis and forecast physiological outcomes of patients with different forms of clinical data[16]. For example, consider the case of an 82-year-old male with acute urinary retention and gross hematuria that underwent an extensive evaluation including imaging and pathology, revealing adenocarcinoma and high-grade ulcerative colitis of the prostate[17]. AI facilitated the dynamic integration of data from various sources such as magnetic resonance imaging, positron emission tomography scans, and laboratory results allowing for real-time multiomic based analysis of tumor progression and treatment response. This enabled the medical team to make timely adjustments, such as switching from systemic chemotherapy to robotic-assisted radical prostatectomy. Additionally, AI could have monitored postoperative prostate specific antigen levels and clinical indicators in real-time, ensuring early detection of any potential issues and contributing to the patient’s favorable recovery and enhanced quality of life where real-time updates by AI were crucial in managing the patient’s prostate cancer[17].

Addressing challenges

By improving our understanding of diseases, finding multimodal biomarker signatures, and combining with other data types to enable more tailored medicine, multiomics research provides a wealth of existing opportunities and prospects of considerable possibilities. However, challenges exist including obstacles such as inconsistent data sources, lack of standardization, and problems with data integration. In addition, concerns about ethics, regulatory frameworks, changes in the scientific community culture, and the requirement for productive teamwork exist and are not easily solved. There is general consensus that challenges and obstacles concerning the utilization of AI and multiomics in clinical care and life sciences research is imperative in order to fully realize the transformative potential of these disciplines in personalized medicine[18]. Furthermore, biases in the training data can result in erroneous predictions because AI systems depend on high-quality data for their operations. hampered by issues including biases, erroneous correlations, and false alarms brought on by inadequately assessed data. Validating significant relationships requires evidence-based methods and strong epidemiological underpinnings. Thorough testing and knowledge integration are necessary to progress from correlation to causation[19]. Also, the ethical integration of technology in healthcare emphasizes preserving the human touch while embracing innovation. Understanding patient journeys and care pathways is crucial to align AI’s transformative potential with individual well-being. Blockchain technology enhances a transparent, secure, and tamper-proof mechanism for storing and sharing healthcare data, addressing privacy, security, and integrity challenges. It enables peer-to-peer data transactions through a distributed ledger and supports smart contracts for automated, decentralized interactions. This decentralized system facilitates fast, secure data exchange between patients, doctors, and healthcare providers giving control over their multiomics information. Together, AI-driven health modules and blockchain security pave the way for a future of proactive, precise, and patient-centric healthcare[20].

CONCLUSION

AI and multiomics integration are revolutionizing clinical research and practice. Standardizing data reporting and addressing ethical and data quality challenges will unlock their full potential. Emphasis on collaboration and transparency will be critical in leveraging these tools to improve patient care and scientific communication.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Medicine, research and experimental

Country of origin: France

Peer-review report’s classification

Scientific Quality: Grade B, Grade B, Grade C, Grade C

Novelty: Grade B, Grade B, Grade B, Grade B

Creativity or Innovation: Grade B, Grade B, Grade B, Grade B

Scientific Significance: Grade A, Grade B, Grade B, Grade B

P-Reviewer: Dai L; Haque MA; Majeed HM S-Editor: Bai Y L-Editor: A P-Editor: Zhao S

References
1.  Schneider B, Alexander J, Thomas P.   Publications Output: U.S. Trends and International Comparisons. Dec 11, 2023. [cited 6 September 2024]. Available from: Available from: https://ncses.nsf.gov/pubs/nsb202333.  [PubMed]  [DOI]  [Cited in This Article: ]
2.  Stanford University  Artificial Intelligence Index Report 2024, Chapter 1: Research and Development. [cited 6 September 2024]. Available from: https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024_Chapter1.pdf.  [PubMed]  [DOI]  [Cited in This Article: ]
3.  Babu M, Snyder M. Multi-Omics Profiling for Health. Mol Cell Proteomics. 2023;22:100561.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 36]  [Article Influence: 18.0]  [Reference Citation Analysis (0)]
4.  Aristotle  Nicomachean Ethics. 2nd ed. New York: Oxford University Press, 2014.  [PubMed]  [DOI]  [Cited in This Article: ]
5.  Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:83.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 900]  [Cited by in F6Publishing: 1274]  [Article Influence: 159.3]  [Reference Citation Analysis (0)]
6.  Gumbs AA, Croner R, Abu-hilal M, Bannone E, Ishizawa T, Spolverato G, Frigerio I, Siriwardena A, Messaoudi N. Surgomics and the Artificial intelligence, Radiomics, Genomics, Oncopathomics and Surgomics (AiRGOS) Project. Art Int Surg. 2023;3:180-5.  [PubMed]  [DOI]  [Cited in This Article: ]
7.  Lu C, Shiradkar R, Liu Z. Integrating pathomics with radiomics and genomics for cancer prognosis: A brief review. Chin J Cancer Res. 2021;33:563-573.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 26]  [Article Influence: 6.5]  [Reference Citation Analysis (0)]
8.  Alagarswamy K, Shi W, Boini A, Messaoudi N, Grasso V, Cattabiani T, Turner B, Croner R, Kahlert UD, Gumbs A. Should AI-Powered Whole-Genome Sequencing Be Used Routinely for Personalized Decision Support in Surgical Oncology—A Scoping Review. BioMedInformatics. 2024;4:1757-1772.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 2]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
9.  Ma LJ, Yang W, Zhang HW. HDR syndrome presented with nephrotic syndrome in a Chinese boy: A case report. World J Clin Cases. 2024;12:6111-6116.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (3)]
10.  Dixon D, Sattar H, Moros N, Kesireddy SR, Ahsan H, Lakkimsetti M, Fatima M, Doshi D, Sadhu K, Junaid Hassan M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus. 2024;16:e59954.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
11.  Abate SM, Checkole YA, Mantedafro B, Basu B, Aynalem AE. Global prevalence and predictors of postoperative delirium among non-cardiac surgical patients: A systematic review and meta-analysis. Int J Surg Open. 2021;32:100334.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 3]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
12.  Benovic S, Ajlani AH, Leinert C, Fotteler M, Wolf D, Steger F, Kestler H, Dallmeier D, Denkinger M, Eschweiler GW, Thomas C, Kocar TD. Introducing a machine learning algorithm for delirium prediction-the Supporting SURgery with GEriatric Co-Management and AI project (SURGE-Ahead). Age Ageing. 2024;53:afae101.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
13.  Wei L, Niraula D, Gates EDH, Fu J, Luo Y, Nyflot MJ, Bowen SR, El Naqa IM, Cui S. Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration. Br J Radiol. 2023;96:20230211.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 10]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
14.  Xu L, Chen SS, Yang C, Cao HJ. Successful endoscopic treatment of superficial esophageal cancer in a patient with esophageal variceal bleeding: A case report. World J Clin Cases. 2024;12:6105-6110.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (4)]
15.  El Hajjar A, Rey JF. Artificial intelligence in gastrointestinal endoscopy: general overview. Chin Med J (Engl). 2020;133:326-334.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 53]  [Article Influence: 10.6]  [Reference Citation Analysis (0)]
16.  Zlobina K, Jafari M, Rolandi M, Gomez M. The role of machine learning in advancing precision medicine with feedback control. Cell Rep Phys Sci. 2022;3:101149.  [PubMed]  [DOI]  [Cited in This Article: ]
17.  Hsu JY, Lin YS, Huang LH, Tsao TY, Hsu CY, Ou YC, Tung MC. Concurrent occurrence of adenocarcinoma and urothelial carcinoma of the prostate gland: A case report. World J Clin Cases. 2024;12:5952-5959.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
18.  Oldoni E, Saunders G, Bietrix F, Garcia Bermejo ML, Niehues A, 't Hoen PAC, Nordlund J, Hajduch M, Scherer A, Kivinen K, Pitkänen E, Mäkela TP, Gut I, Scollen S, Kozera Ł, Esteller M, Shi L, Ussi A, Andreu AL, van Gool AJ. Tackling the translational challenges of multi-omics research in the realm of European personalised medicine: A workshop report. Front Mol Biosci. 2022;9:974799.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
19.  Khoury MJ, Ioannidis JP. Medicine. Big data meets public health. Science. 2014;346:1054-1055.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 227]  [Cited by in F6Publishing: 178]  [Article Influence: 16.2]  [Reference Citation Analysis (0)]
20.  Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines. 2024;12:1496.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]