1
|
Nangpal P, Nagpal NL, Angrish N, Khare G. Model systems to study Mycobacterium tuberculosis infections: an overview of scientific potential and impediments. Front Cell Infect Microbiol 2025; 15:1572547. [PMID: 40406522 PMCID: PMC12095297 DOI: 10.3389/fcimb.2025.1572547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 05/26/2025] Open
Abstract
Despite years of global efforts to combat tuberculosis (TB), Mycobacterium tuberculosis (Mtb), the causative agent of this disease, continues to haunt the humankind making TB elimination a distant task. To comprehend the pathogenic nuances of this organism, various in vitro, ex vivo and in vivo experimental models have been employed by researchers. This review focuses on the salient features as well as pros and cons of various model systems employed for TB research. In vitro and ex vivo macrophage infection models have been extensively used for studying Mtb physiology. Animal models have provided us with great wealth of information and have immensely contributed to the understanding of TB pathogenesis and host responses during infection. Additionally, they have been used for evaluation of anti-mycobacterial drug therapy as well as for determining the efficacy of potential vaccine candidates. Advancements in various 'omics' based approaches have enhanced our understanding about the host-pathogen interface. Although animal models have been the cornerstone to TB research, none of them is ideal that gives us a complete picture of human infection, disease and progression. Further, the review also discusses about the newer systems including three dimensional (3D)-tissue models, lung-on-chip infection model, in vitro TB granuloma model and their limitations for studying TB. Thus, converging information gained from various in vitro and ex vivo models in tandem with in vivo experiments will ultimately bridge the gap that exists in understanding human TB.
Collapse
Affiliation(s)
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Coxon J, Linder E, Sweet C, Magness S, Green L. Replicating Host-Microbiome Interactions: Harnessing Organ-on-a-Chip and Organoid Technologies to Model Vaginal and Lung Physiology. Annu Rev Biomed Eng 2025; 27:403-423. [PMID: 39971348 DOI: 10.1146/annurev-bioeng-110122-122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Organ-on-a-chip (OOC) and organoid technologies are at the forefront of developing sophisticated in vitro systems that replicate complex host-microbiome interactions, including those associated with vaginal health and lung infection. We explore how these technologies provide insights into host-microbiome and host-pathogen interactions and the associated immune responses. Integrating omics data and high-resolution imaging in analyzing these models enhances our understanding of host-microbiome interactions' temporal and spatial aspects, paving the way for new diagnostic and treatment strategies. This review underscores the potential of OOC and organoid technologies in elucidating the complexities of vaginal health and lung disease, which have received less attention than other organ systems in recent organoid and OCC studies. Yet, each system presents notable characteristics, rendering them ideal candidates for these designs. Additionally, this review describes the key factors associated with each organ system and how to choose the technology setup to replicate human physiology.
Collapse
Affiliation(s)
- Jade Coxon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Emily Linder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Caden Sweet
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - Leopold Green
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Zhang J, Fu Y, Fong CY, Hua H, Li W, Khoo BL. Advancements in microfluidic technology for rapid bacterial detection and inflammation-driven diseases. LAB ON A CHIP 2025. [PMID: 40201957 DOI: 10.1039/d4lc00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Bacterial detection is pivotal for the timely diagnosis and effective treatment of infectious diseases. Microfluidic platforms offer advantages over traditional methods, including heightened sensitivity, rapid analysis, and minimal sample volume requirements. Traditional clinical methods for bacterial identification often involve extended processing times and necessitate high pathogen concentrations, resulting in delayed diagnoses and missed treatment opportunities. Microfluidic technology overcomes these limitations by facilitating rapid bacterial identification at lower biomass levels, thus ensuring prompt and precise treatment interventions. Additionally, bacteria-driven inflammation has been associated with the development and progression of various diseases, including cancer. Elucidating the complex interplay between bacteria, inflammation, and disease is essential for devising effective disease models and therapeutic strategies. Microfluidic platforms have been used to construct in vitro disease models that accurately replicate the intricate microenvironment that bacteria-driven inflammation affects. These models offer valuable insights into bacteria-driven inflammation and its impact on disease progression, such as cancer metastasis and therapeutic responses. This review examines recent advancements in bacterial detection using microfluidics and assesses the potential of this technology as a robust tool for exploring bacteria-driven inflammation in the context of cancer.
Collapse
Affiliation(s)
- Jing Zhang
- College of Basic Medicine, Hebei University, Baoding, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| | - Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Ching Yin Fong
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Haojun Hua
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Wei Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Arbués A, Schmidiger S, Reinhard M, Borrell S, Gagneux S, Portevin D. Soluble immune mediators orchestrate protective in vitro granulomatous responses across Mycobacterium tuberculosis complex lineages. eLife 2025; 13:RP99062. [PMID: 40162896 PMCID: PMC11957536 DOI: 10.7554/elife.99062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets-a phenotype associated with dormancy-that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sarah Schmidiger
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Damien Portevin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
5
|
Sousa MGC, Brasino DSK, Krieger M, Dindar DA, Duhen R, Zhang Z, Franca CM, Bertassoni LE. Host-microbe-cancer interactions on-a-chip. Front Bioeng Biotechnol 2025; 13:1505963. [PMID: 40230461 PMCID: PMC11994592 DOI: 10.3389/fbioe.2025.1505963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
The tumor microbiota has emerged as a pivotal contributor to a variety of cancers, impacting disease development, progression, and therapeutic resistance. Due to the complexity of the tumor microenvironment, reproducing the interactions between the microbes, tumor cells, and the immune system remains a great challenge for both in vitro and in vivo studies. To this end, significant progress has been made toward leveraging tumor-on-a-chip model systems to replicate critical hallmarks of the native disease in vitro. These microfluidic platforms offer the ability to mimic essential components of the tumor microenvironment, including controllable fluid flow conditions, manipulable extracellular matrix dynamics, and intricate 3D multi-cellular communication. The primary objective of this review is to discuss recent challenges and advances in engineering host-microbiota and tumor interactions on-a-chip. Ultimately, overcoming these obstacles will help us gain deeper insights into tumor-microbe interactions and enhance avenues for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Mauricio G. C. Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Danielle S. K. Brasino
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Duygu A. Dindar
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Rebekka Duhen
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Cristiane Miranda Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
6
|
Aggarwal S, Chakraborty A, Singh V, Lory S, Karalis K, Rahme LG. Revealing the impact of Pseudomonas aeruginosa quorum sensing molecule 2'-aminoacetophenone on human bronchial-airway epithelium and pulmonary endothelium using a human airway-on-a-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644589. [PMID: 40196568 PMCID: PMC11974707 DOI: 10.1101/2025.03.21.644589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Pseudomonas aeruginosa (PA) causes severe respiratory infections utilizing multiple virulence functions. Our previous findings on PA quorum sensing (QS)-regulated small molecule, 2'-aminoacetophenone (2-AA), secreted by the bacteria in infected tissues, revealed its effect on immune and metabolic functions favouring a long-term presence of PA in the host. However, studies on 2-AA's specific effects on bronchial-airway epithelium and pulmonary endothelium remain elusive. To evaluate 2AA's spatiotemporal changes in the human airway, considering endothelial cells as the first point of contact when the route of lung infection is hematogenic, we utilized the microfluidic airway-on-chip lined by polarized human bronchial-airway epithelium and pulmonary endothelium. Using this platform, we performed RNA-sequencing to analyse responses of 2-AA-treated primary human pulmonary microvascular endothelium (HPMEC) and adjacent primary normal human bronchial epithelial (NHBE) cells from healthy female donors and potential cross-talk between these cells. Analyses unveiled specific signaling and biosynthesis pathways to be differentially regulated by 2-AA in epithelial cells, including HIF-1 and pyrimidine signaling, glycosaminoglycan, and glycosphingolipid biosynthesis, while in endothelial cells were fatty acid metabolism, phosphatidylinositol and estrogen receptor signaling, and proinflammatory signaling pathways. Significant overlap in both cell types in response to 2-AA was found in genes implicated in immune response and cellular functions. In contrast, we found that genes related to barrier permeability, cholesterol metabolism, and oxidative phosphorylation were differentially regulated upon exposure to 2-AA in the cell types studied. Murine in-vivo and additional in vitro cell culture studies confirmed cholesterol accumulation in epithelial cells. Results also revealed specific biomarkers associated with cystic fibrosis and idiopathic pulmonary fibrosis to be modulated by 2-AA in both cell types, with the cystic fibrosis transmembrane regulator expression to be affected only in endothelial cells. The 2-AA-mediated effects on healthy epithelial and endothelial primary cells within a microphysiological dynamic environment mimicking the human lung airway enhance our understanding of this QS signaling molecule. This study provides novel insights into their functions and potential interactions, paving the way for innovative, cell-specific therapeutic strategies to combat PA lung infections.
Collapse
|
7
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Kolesov D. Unravelling approaches to study macrophages: from classical to novel biophysical methodologies. PeerJ 2025; 13:e19039. [PMID: 39989743 PMCID: PMC11847493 DOI: 10.7717/peerj.19039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Macrophages play crucial roles in immune responses and tissue homeostasis. Despite the fact that macrophages were described more than a century ago, they continue to be the cells of intensive interest. Advanced understanding of phenotypic diversity in macrophages holds great promise for development of cell-based therapeutic strategies. The introduction of innovative approaches in cell biology greatly enhances our ability to investigate the unique characteristics of macrophages. The review considers both classical methods to study macrophages and high-tech approaches, including single-cell sequencing, single-cell mass spectrometry, droplet microfluidics, scanning probe microscopy and atomic force spectroscopy. This review will be valuable both to specialists beginning their study of macrophages and to experienced scientists seeking to deepen their understanding of methods at the intersection of biological and physical sciences.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dmitry Kolesov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Moscow Polytechnic University, Moscow, Russia
| |
Collapse
|
8
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Saqib M, Das S, Nafiz TN, McDonough E, Sankar P, Mishra LK, Zhang X, Cai Y, Subbian S, Mishra BB. Pathogenic role for CD101-negative neutrophils in the type I interferon-mediated immunopathogenesis of tuberculosis. Cell Rep 2025; 44:115072. [PMID: 39693225 PMCID: PMC11829800 DOI: 10.1016/j.celrep.2024.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are vital for immunity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), yet their heterogeneous nature suggests a complex role in TB pathogenesis. Here, we identify two distinct neutrophil populations based on CD101 expression, highlighting their divergent roles in TB. CD101-negative (CD101-ve) neutrophils, which resemble immature, pro-inflammatory granulocytes, exhibit reduced Mtb phagocytosis compared to their mature, CD101-positive (CD101+ve) counterparts. Our findings reveal that type I interferons (IFN-Is) suppress neutrophil Mtb uptake and drive the recruitment of CD101-ve neutrophils to the lungs. Infiltration of these cells promotes Mtb extracellular persistence, exacerbates epithelial damage, and impairs surfactant production. Furthermore, we demonstrate that granulocyte colony-stimulating factor (G-CSF) and chemokine receptor CXCR2 are essential for the pulmonary accumulation of CD101-ve neutrophils. Our study uncovers a pathogenic role for CD101-ve neutrophils in TB and highlights the IFN-I-dependent recruitment of this functionally compromised immature neutrophil as a driver of TB immunopathogenesis.
Collapse
Affiliation(s)
- Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Tanvir N Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Elizabeth McDonough
- GE Healthcare Technology and Innovation Center, GE Research, Niskayuna, NY, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Lokesh K Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Ximeng Zhang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Bibhuti B Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
10
|
Ardila CM. Advancing healthcare through laboratory on a chip technology: Transforming microorganism identification and diagnostics. World J Clin Cases 2025; 13:97737. [PMID: 39866650 PMCID: PMC11577522 DOI: 10.12998/wjcc.v13.i3.97737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/12/2024] Open
Abstract
In a recent case report in the World Journal of Clinical Cases, emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes. Laboratory-on-a-chip (LOC) technology has emerged as a transformative tool in health care, offering rapid, sensitive, and specific identification of microorganisms. This editorial provides a comprehensive overview of LOC technology, highlighting its principles, advantages, applications, challenges, and future directions. Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics, epidemiology, and food safety. Comparative studies have underscored the superiority of LOC technology over traditional methods, showcasing improvements in speed, accuracy, and portability. The future integration of LOC with biosensors, artificial intelligence, and data analytics promises further innovation and expansion. This call to action emphasizes the importance of continued research, investment, and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
Collapse
Affiliation(s)
- Carlos M Ardila
- Department of Basic Sciences, Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín 0057, Colombia
| |
Collapse
|
11
|
Richter C, Latta L, Harig D, Carius P, Stucki JD, Hobi N, Hugi A, Schumacher P, Krebs T, Gamrekeli A, Stöckle F, Urbschat K, Montalvo G, Lautenschläger F, Loretz B, Hidalgo A, Schneider‐Daum N, Lehr C. A stretchable human lung-on-chip model of alveolar inflammation for evaluating anti-inflammatory drug response. Bioeng Transl Med 2025; 10:e10715. [PMID: 39801748 PMCID: PMC11711225 DOI: 10.1002/btm2.10715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 01/16/2025] Open
Abstract
This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip. For validating the in vitro model, three different protocols have been developed to demonstrate the clinically established anti-inflammatory effect of glucocorticoids to reduce certain inflammatory markers after different pro-inflammatory stimuli: (1) an inflammation caused by bacterial LPS (lipopolysaccharides) to simulate an LPS-induced acute lung injury measured best with cytokine IL-6 release; (2) an inflammation caused by LPS at ALI (air-liquid interface) to investigate aerosolized anti-inflammatory treatment, measured with chemokine IL-8 release; and (3) an inflammation with a combination of human inflammatory cytokines TNFα and IFNγ to simulate a critical cytokine storm leading to epithelial barrier disruption, where the eventual weakening or protection of the epithelial barrier can be measured. In all cases, the presence of macrophages appeared to be crucial to mediating inflammatory changes in the alveolar epithelium. LPS induction led to inflammatory changes independently of stretch conditions. Dynamic stretch, emulating breathing-like mechanics, was essential for in vitro modeling of the clinically relevant outcome of epithelial barrier disruption upon TNFα/IFNγ-induced inflammation.
Collapse
Affiliation(s)
- Clémentine Richter
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Daria Harig
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Patrick Carius
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Janick D. Stucki
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
- ARTORG Center for Biomedical Engineering Research, Organs‐on‐Chip Technologies, University of BernBernSwitzerland
| | - Nina Hobi
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
- ARTORG Center for Biomedical Engineering Research, Organs‐on‐Chip Technologies, University of BernBernSwitzerland
| | - Andreas Hugi
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
| | | | | | | | - Felix Stöckle
- Center for Thorax Medicine, Clinic SaarbrückenSaarbrückenGermany
| | - Klaus Urbschat
- Section of Thoracic Surgery of the Saar Lung Center, SHG ClinicsVölklingenGermany
| | - Galia Montalvo
- Department of Experimental PhysicsSaarland UniversitySaarbrückenGermany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland UniversityHomburgGermany
| | - Franziska Lautenschläger
- Department of Experimental PhysicsSaarland UniversitySaarbrückenGermany
- Center for Biophysics, Saarland UniversitySaarbrückenGermany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Alberto Hidalgo
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | | | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| |
Collapse
|
12
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
13
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
14
|
Bhattacharya D, Barrile R, Toukam DK, Gawali VS, Kallay L, Ahmed T, Brown H, Rezvanian S, Karve A, Desai PB, Medvedovic M, Wang K, Ionascu D, Harun N, Vallabhapurapu S, Wang C, Qi X, Baschnagel AM, Kritzer JA, Cook JM, Pomeranz Krummel DA, Sengupta S. GABA(A) Receptor Activation Drives GABARAP-Nix Mediated Autophagy to Radiation-Sensitize Primary and Brain-Metastatic Lung Adenocarcinoma Tumors. Cancers (Basel) 2024; 16:3167. [PMID: 39335139 PMCID: PMC11430345 DOI: 10.3390/cancers16183167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex vivo 'chip', AM-101 is as efficacious as docetaxel, a chemotherapeutic used with radiotherapy for advanced-stage NSCLC. In vivo, AM-101 potentiates radiation, including conferring a significant survival benefit to mice bearing NSCLC intracranial tumors generated using a patient-derived metastatic line. GABA(A) receptor activation stimulates a selective-autophagic response via the multimerization of GABA(A) receptor-associated protein, GABARAP, the stabilization of mitochondrial receptor Nix, and the utilization of ubiquitin-binding protein p62. A high-affinity peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP-Nix multimerization axis that triggers autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity.
Collapse
Affiliation(s)
- Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (D.B.); (D.K.T.); (V.S.G.); (L.K.)
| | - Riccardo Barrile
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (D.B.); (D.K.T.); (V.S.G.); (L.K.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (D.B.); (D.K.T.); (V.S.G.); (L.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (D.B.); (D.K.T.); (V.S.G.); (L.K.)
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA; (T.A.); (S.R.); (J.M.C.)
| | - Hawley Brown
- Department of Chemistry, Tufts University, Medford, MA 02144, USA; (H.B.); (J.A.K.)
| | - Sepideh Rezvanian
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA; (T.A.); (S.R.); (J.M.C.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.B.D.)
| | - Pankaj B. Desai
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.B.D.)
| | - Mario Medvedovic
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Kyle Wang
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; (K.W.); (D.I.)
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; (K.W.); (D.I.)
| | - Nusrat Harun
- Division of Biostatistics & Epidemiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Subrahmanya Vallabhapurapu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (S.V.); (X.Q.)
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (S.V.); (X.Q.)
| | | | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, MA 02144, USA; (H.B.); (J.A.K.)
| | - James M. Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA; (T.A.); (S.R.); (J.M.C.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Soma Sengupta
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27517, USA
| |
Collapse
|
15
|
Walocha R, Kim M, Wong-Ng J, Gobaa S, Sauvonnet N. Organoids and organ-on-chip technology for investigating host-microorganism interactions. Microbes Infect 2024; 26:105319. [PMID: 38447861 DOI: 10.1016/j.micinf.2024.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in organoid and organ-on-chip (OoC) technologies offer an unprecedented level of tissue mimicry. These models can recapitulate the diversity of cellular composition, 3D organization, and mechanical stimulation. These approaches are intensively used to understand complex diseases. This review focuses on the latest advances in this field to study host-microorganism interactions.
Collapse
Affiliation(s)
- Remigiusz Walocha
- Tissue Homeostasis Group, Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France; Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - MinHee Kim
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jérôme Wong-Ng
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nathalie Sauvonnet
- Tissue Homeostasis Group, Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France; Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
16
|
Ektnitphong V, Dias BRS, Campos PC, Shiloh MU. An alveolus lung-on-a-chip model of Mycobacterium fortuitum lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610530. [PMID: 39257817 PMCID: PMC11383683 DOI: 10.1101/2024.08.30.610530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Lung disease due to non-tuberculous mycobacteria (NTM) is rising in incidence. While both two dimensional cell culture and animal models exist for NTM infections, a major knowledge gap is the early responses of human alveolar and innate immune cells to NTM within the human alveolar microenvironment. Here we describe development of a humanized, three-dimensional, alveolus lung-on-a-chip (ALoC) model of Mycobacterium fortuitum lung infection that incorporates only primary human cells such as pulmonary vascular endothelial cells in a vascular channel, and type I and II alveolar cells and monocyte-derived macrophages in an alveolar channel along an air-liquid interface. M. fortuitum introduced into the alveolar channel primarily infected macrophages, with rare bacteria inside alveolar cells. Bulk-RNA sequencing of infected chips revealed marked upregulation of transcripts for cytokines, chemokines and secreted protease inhibitors (SERPINs). Our results demonstrate how a humanized ALoC system can identify critical early immune and epithelial responses to M. fortuitum infection. We envision potential application of the ALoC to other NTM and for studies of new antibiotics.
Collapse
Affiliation(s)
- Victoria Ektnitphong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| | - Beatriz R S Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| | - Priscila C Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| |
Collapse
|
17
|
Man Y, Zhai Y, Jiang A, Bai H, Gulati A, Plebani R, Mannix RJ, Merry GE, Goyal G, Belgur C, Hall SRR, Ingber DE. Exacerbation of influenza virus induced lung injury by alveolar macrophages and its suppression by pyroptosis blockade in a human lung alveolus chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607799. [PMID: 39211234 PMCID: PMC11361059 DOI: 10.1101/2024.08.13.607799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1β, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).
Collapse
|
18
|
Kim SY, Choi JA, Choi S, Kim KK, Song CH, Kim EM. Advances in an In Vitro Tuberculosis Infection Model Using Human Lung Organoids for Host-Directed Therapies. PLoS Pathog 2024; 20:e1012295. [PMID: 39052544 PMCID: PMC11271890 DOI: 10.1371/journal.ppat.1012295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis (M.tb) has led to the development of novel anti-tuberculosis (anti-TB) drugs. Common methods for testing the efficacy of new drugs, including two-dimensional cell culture models or animal models, have several limitations. Therefore, an appropriate model representative of the human organism is required. Here, we developed an M.tb infection model using human lung organoids (hLOs) and demonstrated that M.tb H37Rv can infect lung epithelial cells and human macrophages (hMφs) in hLOs. This novel M.tb infection model can be cultured long-term and split several times while maintaining a similar number of M.tb H37Rv inside the hLOs. Anti-TB drugs reduced the intracellular survival of M.tb in hLOs. Notably, M.tb growth in hLOs was effectively suppressed at each passage by rifampicin and bedaquiline. Furthermore, a reduction in inflammatory cytokine production and intracellular survival of M.tb were observed upon knockdown of MFN2 and HERPUD1 (host-directed therapeutic targets for TB) in our M.tb H37Rv-infected hLO model. Thus, the incorporation of hMφs and M.tb into hLOs provides a powerful strategy for generating an M.tb infection model. This model can effectively reflect host-pathogen interactions and be utilized to test the efficacy of anti-TB drugs and host-directed therapies.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University Daejeon, Republic of Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Seri Choi
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University Daejeon, Republic of Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Yin DE, Palin AC, Lombo TB, Mahon RN, Poon B, Wu DY, Atala A, Brooks KM, Chen S, Coyne CB, D’Souza MP, Fackler OT, Furler O’Brien RL, Garcia-de-Alba C, Jean-Philippe P, Karn J, Majji S, Muotri AR, Ozulumba T, Sakatis MZ, Schlesinger LS, Singh A, Spiegel HM, Struble E, Sung K, Tagle DA, Thacker VV, Tidball AM, Varthakavi V, Vunjak-Novakovic G, Wagar LE, Yeung CK, Ndhlovu LC, Ott M. 3D human tissue models and microphysiological systems for HIV and related comorbidities. Trends Biotechnol 2024; 42:526-543. [PMID: 38071144 PMCID: PMC11065605 DOI: 10.1016/j.tibtech.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 03/03/2024]
Abstract
Three-dimensional (3D) human tissue models/microphysiological systems (e.g., organs-on-chips, organoids, and tissue explants) model HIV and related comorbidities and have potential to address critical questions, including characterization of viral reservoirs, insufficient innate and adaptive immune responses, biomarker discovery and evaluation, medical complexity with comorbidities (e.g., tuberculosis and SARS-CoV-2), and protection and transmission during pregnancy and birth. Composed of multiple primary or stem cell-derived cell types organized in a dedicated 3D space, these systems hold unique promise for better reproducing human physiology, advancing therapeutic development, and bridging the human-animal model translational gap. Here, we discuss the promises and achievements with 3D human tissue models in HIV and comorbidity research, along with remaining barriers with respect to cell biology, virology, immunology, and regulatory issues.
Collapse
|
21
|
Du XY, Yang JY. Biomimetic microfluidic chips for toxicity assessment of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170745. [PMID: 38340832 DOI: 10.1016/j.scitotenv.2024.170745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.
Collapse
Affiliation(s)
- Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China..
| |
Collapse
|
22
|
Alonso-Roman R, Mosig AS, Figge MT, Papenfort K, Eggeling C, Schacher FH, Hube B, Gresnigt MS. Organ-on-chip models for infectious disease research. Nat Microbiol 2024; 9:891-904. [PMID: 38528150 DOI: 10.1038/s41564-024-01645-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Research on microbial pathogens has traditionally relied on animal and cell culture models to mimic infection processes in the host. Over recent years, developments in microfluidics and bioengineering have led to organ-on-chip (OoC) technologies. These microfluidic systems create conditions that are more physiologically relevant and can be considered humanized in vitro models. Here we review various OoC models and how they have been applied for infectious disease research. We outline the properties that make them valuable tools in microbiology, such as dynamic microenvironments, vascularization, near-physiological tissue constitutions and partial integration of functional immune cells, as well as their limitations. Finally, we discuss the prospects for OoCs and their potential role in future infectious disease research.
Collapse
Affiliation(s)
- Raquel Alonso-Roman
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander S Mosig
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Applied Systems Biology Group, Leibniz-HKI, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Kai Papenfort
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Leibniz Center for Photonics in Infection Research e.V., Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Felix H Schacher
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz-HKI, Jena, Germany
| |
Collapse
|
23
|
Olmo-Fontánez AM, Scordo JM, Schami A, Garcia-Vilanova A, Pino PA, Hicks A, Mishra R, Jose Maselli D, Peters JI, Restrepo BI, Nargan K, Naidoo T, Clemens DL, Steyn AJC, Thacker VV, Turner J, Schlesinger LS, Torrelles JB. Human alveolar lining fluid from the elderly promotes Mycobacterium tuberculosis intracellular growth and translocation into the cytosol of alveolar epithelial cells. Mucosal Immunol 2024; 17:155-168. [PMID: 38185331 PMCID: PMC11034793 DOI: 10.1016/j.mucimm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.
Collapse
Affiliation(s)
- Angélica M Olmo-Fontánez
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, Texas, USA.
| | - Julia M Scordo
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Alyssa Schami
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Andreu Garcia-Vilanova
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Paula A Pino
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Amberlee Hicks
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Diego Jose Maselli
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Jay I Peters
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Blanca I Restrepo
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; University of Texas Health Science Center at Houston, School of Public Health, Brownsville campus, Brownsville, Texas, USA; South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha, South Africa
| | - Daniel L Clemens
- University of California, Los Angeles Health Sciences, Los Angeles, California, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Joanne Turner
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S Schlesinger
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jordi B Torrelles
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; International Center for the Advancement of Research and Education (I●CARE), Texas Biomedical Research Institute, San Antonio, TX, US.
| |
Collapse
|
24
|
Shang X, Maimaiti N, Fan J, Wang L, Wang Y, Sun H, Lv J, Zhang X, Wang J, Ma X. Triggering Receptor Expressed on Myeloid Cells 2 Mediates the Involvement of M2-Type Macrophages in Pulmonary Tuberculosis Infection. J Inflamm Res 2024; 17:1919-1928. [PMID: 38562656 PMCID: PMC10982454 DOI: 10.2147/jir.s435216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background Macrophage play a significant work in the development of tuberculosis. This study aims to investigate the relationship between TREM2 and macrophage polarization, as well as the related cytokines. Methods This study involved 43 pulmonary tuberculosis patients and 37 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of M1/M2 macrophage-related cytokines IL-10 and IL-12 in the peripheral blood of pulmonary tuberculosis patients. The relative mRNA expression levels of TREM2, IL-10 and IL-12 were detected using quantitative real-time PCR (qRT-PCR). Additionally, Spearman rank correlation analysis was used to preliminarily assess the correlation between TREM2 and M1 / M2 macrophages. Hematoxylin-eosin (HE) staining was performed to observe the pathological manifestations of pulmonary tuberculosis lesions. Immunohistochemical (IHC) staining was used to observe the localization of the macrophage-specific molecule CD68, the M1 specific molecule iNOS, the M2 specific molecule CD163, and TREM2. Results The lesions of pulmonary tuberculosis patients showed Langhans multinucleated macrophages and tuberculous granulomas. The ELISA results indicated that the expression levels of IL-10 and IL-12 were significantly increased in peripheral blood of pulmonary tuberculosis patients. Additionally, the relative mRNA expression levels of TREM2, IL-10 and IL-12 were also significantly higher in the pulmonary tuberculosis group. Furthermore, a positive correlation was observed between TREM2 and IL-10, which are secreted by M2 macrophages. IHC revealed significant positivity of TREM2 and macrophage-related markers in tuberculous granuloma. Specifically, TREM2 and M2 macrophage marker CD163 were significantly expressed in the cytoplasm and membrane of Langhans multinucleated macrophages. Conclusion The role of macrophage polarization in pulmonary tuberculosis is significant, and further investigation is needed to understand relationship between TREM2 and M2 macrophages.
Collapse
Affiliation(s)
- Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Naifeisha Maimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Jiahui Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Liang Wang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Yuanyuan Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Hu Sun
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, People's Republic of China
| | - Jing Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, People's Republic of China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| |
Collapse
|
25
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
26
|
Nesakumar M, Luke EH, Vetrivel U. Next-Gen Dual Transcriptomics for Adult Extrapulmonary Tuberculosis Biomarkers and Host-Pathogen Interplay in Human Cells: A Strategic Review. Indian J Microbiol 2024; 64:36-47. [PMID: 38468742 PMCID: PMC10924812 DOI: 10.1007/s12088-023-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024] Open
Abstract
Tuberculosis (TB) is a major public health concern that results in significant morbidity and mortality, particularly in middle- to low-income countries. Extra-pulmonary tuberculosis (EPTB) in adults is a form of TB that affects organs other than the lungs and is challenging to diagnose and treat due to a lack of accurate early diagnostic markers and inadequate knowledge of host immunity. Next-generation sequencing-based approaches have shown potential for identifying diagnostic biomarkers and host immune responses related to EPTB. This strategic review discusses on the significance using primary human cells and cell lines for in vitro transcriptomic studies on common forms of EPTB, such as lymph node TB, brain TB, bone TB, and endometrial TB to derive potential insights. While organoids have shown promise as a model system, primary cell lines still remain a valuable tool for studying host-pathogen interplay due to their conserved immune system, non-iPSC origin, and lack of heterogeneity in cell population. This review outlines a basic workflow for researchers interested in performing transcriptomics studies in EPTB, and also discusses the potential of cell-line based dual RNA-Seq technology for deciphering comprehensive transcriptomic signatures, host-pathogen interplay, and biomarkers from the host and Mycobacterium tuberculosis. Thus, emphasizing the implementation of this technique which can significantly contribute to the global anti-TB effort and advance our understanding of EPTB. Graphical Abstract
Collapse
Affiliation(s)
- Manohar Nesakumar
- Department of Virology and Biotechnology, Bioinformatics Division, Indian Council for Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Elizabeth Hanna Luke
- Department of Virology and Biotechnology, Bioinformatics Division, Indian Council for Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Umashankar Vetrivel
- Department of Virology and Biotechnology, Bioinformatics Division, Indian Council for Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| |
Collapse
|
27
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
28
|
Toniolo C, Sage D, McKinney JD, Dhar N. Quantification of Mycobacterium tuberculosis Growth in Cell-Based Infection Assays by Time-Lapse Fluorescence Microscopy. Methods Mol Biol 2024; 2813:167-188. [PMID: 38888778 DOI: 10.1007/978-1-0716-3890-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Quantification of Mycobacterium tuberculosis (Mtb) growth dynamics in cell-based in vitro infection models is traditionally carried out by measurement of colony forming units (CFU). However, Mtb being an extremely slow growing organism (16-24 h doubling time), this approach requires at least 3 weeks of incubation to obtain measurable readouts. In this chapter, we describe an alternative approach based on time-lapse microscopy and quantitative image analysis that allows faster quantification of Mtb growth dynamics in host cells. In addition, this approach provides the capability to capture other readouts from the same experimental setup, such as host cell viability, bacterial localization as well as the dynamics of propagation of infection between the host cells.
Collapse
Affiliation(s)
- Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
29
|
Bhattacharya D, Barille R, Toukam DK, Gawali VS, Kallay L, Ahmed T, Brown H, Rezvanian S, Karve A, Desai PB, Medvedovic M, Wang K, Ionascu D, Harun N, Wang C, Baschnagel AM, Kritzer JA, Cook JM, Pomeranz Krummel DA, Sengupta S. GABA(A) receptor activation drives GABARAP-Nix mediated autophagy to radiation-sensitize primary and brain-metastatic lung adenocarcinoma tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569295. [PMID: 38076805 PMCID: PMC10705483 DOI: 10.1101/2023.11.29.569295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
In non-small cell lung cancer (NSCLC) treatment, targeted therapies benefit only a subset of NSCLC, while radiotherapy responses are not durable and toxicity limits therapy. We find that a GABA(A) receptor activator, AM-101, impairs viability and clonogenicity of NSCLC primary and brain metastatic cells. Employing an ex vivo 'chip', AM-101 is as efficacious as the chemotherapeutic docetaxel, which is used with radiotherapy for advanced-stage NSCLC. In vivo , AM-101 potentiates radiation, including conferring a survival benefit to mice bearing NSCLC intracranial tumors. GABA(A) receptor activation stimulates a selective-autophagic response via multimerization of GABA(A) Receptor-Associated Protein (GABARAP), stabilization of mitochondrial receptor Nix, and utilization of ubiquitin-binding protein p62. A targeted-peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP-Nix multimerization axis triggering autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity. Highlights Activating GABA(A) receptors intrinsic to lung primary and metastatic brain cancer cells triggers a cytotoxic response. GABA(A) receptor activation works as well as chemotherapeutic docetaxel in impairing lung cancer viability ex vivo . GABA(A) receptor activation increases survival of mice bearing lung metastatic brain tumors.A selective-autophagic response is stimulated by GABA(A) receptor activation that includes multimerization of GABARAP and Nix.Employing a new nanomolar affinity peptide that abrogates autophagosome formation inhibits cytotoxicity elicited by GABA(A) receptor activation.
Collapse
|
30
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
31
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
32
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Zhu L, Zhang J, Guo Q, Kuang J, Li D, Wu M, Mo Y, Zhang T, Gao X, Tan J. Advanced lung organoids and lung-on-a-chip for cancer research and drug evaluation: a review. Front Bioeng Biotechnol 2023; 11:1299033. [PMID: 38026900 PMCID: PMC10662056 DOI: 10.3389/fbioe.2023.1299033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer has become the primary cause of cancer-related deaths because of its high recurrence rate, ability to metastasise easily, and propensity to develop drug resistance. The wide-ranging heterogeneity of lung cancer subtypes increases the complexity of developing effective therapeutic interventions. Therefore, personalised diagnostic and treatment strategies are required to guide clinical practice. The advent of innovative three-dimensional (3D) culture systems such as organoid and organ-on-a-chip models provides opportunities to address these challenges and revolutionise lung cancer research and drug evaluation. In this review, we introduce the advancements in lung-related 3D culture systems, with a particular focus on lung organoids and lung-on-a-chip, and their latest contributions to lung cancer research and drug evaluation. These developments include various aspects, from authentic simulations and mechanistic enquiries into lung cancer to assessing chemotherapeutic agents and targeted therapeutic interventions. The new 3D culture system can mimic the pathological and physiological microenvironment of the lung, enabling it to supplement or replace existing two-dimensional culture models and animal experimental models and realize the potential for personalised lung cancer treatment.
Collapse
Affiliation(s)
- Leqing Zhu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Shenzhen Clinical Medical College, Southern Medical University, Shenzhen, China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mengxi Wu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yijun Mo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
34
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
35
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
36
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
37
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
39
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
41
|
Vashishth A, Shuaib M, Bansal T, Kumar S. Mycobacterium Tubercular Mediated Inflammation and Lung Carcinogenesis: Connecting Links. OBM GENETICS 2023; 07:1-17. [DOI: 10.21926/obm.genet.2302183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Lung cancer is a leading cause of death among all the cancer worldwide and it has the highest occurrence and mortality rates. <em>Mycobacterium</em> <em>tuberculosis</em> (MTB) induced tuberculosis has been known as one of the risk factors for lung carcinogenesis. The exact mechanism of MTB is understood to date. Several research and epidemiological studies about the link between tuberculosis and lung cancer exist. It has been proposed that tuberculosis causes chronic inflammation, which increases the risk of lung cancer by creating a favorable environment. EGFR downstream signaling promotes constitutive activation of TKIs domain due to the mutation in exon 19 and exon 21 (L858R point mutation), which leads to cell proliferation, invasion, metastasis, and angiogenesis, causing lung adenocarcinoma. Several other studies have shown that human monocyte cells infected by MTB enhance the invasion and cause induction of epithelial-mesenchymal transition (EMT) characteristics in lung cancer cell co-culture. This review article has tried to draw a relationship between chronic tuberculosis and lung carcinogenesis.
Collapse
|
42
|
Van Os L, Engelhardt B, Guenat OT. Integration of immune cells in organs-on-chips: a tutorial. Front Bioeng Biotechnol 2023; 11:1191104. [PMID: 37324438 PMCID: PMC10267470 DOI: 10.3389/fbioe.2023.1191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Viral and bacterial infections continue to pose significant challenges for numerous individuals globally. To develop novel therapies to combat infections, more insight into the actions of the human innate and adaptive immune system during infection is necessary. Human in vitro models, such as organs-on-chip (OOC) models, have proven to be a valuable addition to the tissue modeling toolbox. The incorporation of an immune component is needed to bring OOC models to the next level and enable them to mimic complex biological responses. The immune system affects many (patho)physiological processes in the human body, such as those taking place during an infection. This tutorial review introduces the reader to the building blocks of an OOC model of acute infection to investigate recruitment of circulating immune cells into the infected tissue. The multi-step extravasation cascade in vivo is described, followed by an in-depth guide on how to model this process on a chip. Next to chip design, creation of a chemotactic gradient and incorporation of endothelial, epithelial, and immune cells, the review focuses on the hydrogel extracellular matrix (ECM) to accurately model the interstitial space through which extravasated immune cells migrate towards the site of infection. Overall, this tutorial review is a practical guide for developing an OOC model of immune cell migration from the blood into the interstitial space during infection.
Collapse
Affiliation(s)
- Lisette Van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Dai G, Zhao P, Song L, He Z, Liu D, Duan X, Yang Q, Zhao W, Shen J, Asakawa T, Zheng M, Lu H. Devising novel near-infrared aggregation-induced-emission luminogen labeling for point-of-care diagnosis of Mycobacterium tuberculosis. Biosci Trends 2023:2023.01087. [PMID: 37245987 DOI: 10.5582/bst.2023.01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Detecting and appropriately diagnosing a Mycobacterium tuberculosis infection remains technologically difficult because the pathogen commonly hides in macrophages in a dormant state. Described here is novel near-infrared aggregation-induced-emission luminogen (AIEgen) labeling developed by the current authors' laboratory for point-of-care (POC) diagnosis of an M. tuberculosis infection. The selectivity of AIEgen labeling, the labeling of intracellular M. tuberculosis by AIEgen, and the labeling of M. tuberculosis in sputum samples by AIEgen, along with its accuracy, sensitivity, and specificity, were preliminarily evaluated. Results indicated that this near-infrared AIEgen labeling had satisfactory selectivity and it labeled intracellular M. tuberculosis and M. tuberculosis in sputum samples. It had a satisfactory accuracy (95.7%), sensitivity (95.5%), and specificity (100%) for diagnosis of an M. tuberculosis infection in sputum samples. The current results indicated that near-infrared AIEgen labeling might be a promising novel diagnostic tool for POC diagnosis of M. tuberculosis infection, though further rigorous verification of these findings is required.
Collapse
Affiliation(s)
- Guiqin Dai
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Pengfei Zhao
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lijun Song
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhuojun He
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Deliang Liu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xiangke Duan
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Wenchang Zhao
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayin Shen
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Department of Science and Education, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Mingbin Zheng
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
45
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
46
|
Kurow O, Nuwayhid R, Stock P, Steinert M, Langer S, Krämer S, Metelmann IB. Organotypic 3D Co-Culture of Human Pleura as a Novel In Vitro Model of Staphylococcus aureus Infection and Biofilm Development. Bioengineering (Basel) 2023; 10:bioengineering10050537. [PMID: 37237611 DOI: 10.3390/bioengineering10050537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial pleural infections are associated with high mortality. Treatment is complicated due to biofilm formation. A common causative pathogen is Staphylococcus aureus (S. aureus). Since it is distinctly human-specific, rodent models do not provide adequate conditions for research. The purpose of this study was to examine the effects of S. aureus infection on human pleural mesothelial cells using a recently established 3D organotypic co-culture model of pleura derived from human specimens. After infection of our model with S. aureus, samples were harvested at defined time points. Histological analysis and immunostaining for tight junction proteins (c-Jun, VE-cadherin, and ZO-1) were performed, demonstrating changes comparable to in vivo empyema. The measurement of secreted cytokine levels (TNF-α, MCP-1, and IL-1β) proved host-pathogen interactions in our model. Similarly, mesothelial cells produced VEGF on in vivo levels. These findings were contrasted by vital, unimpaired cells in a sterile control model. We were able to establish a 3D organotypic in vitro co-culture model of human pleura infected with S. aureus resulting in the formation of biofilm, including host-pathogen interactions. This novel model could be a useful microenvironment tool for in vitro studies on biofilm in pleural empyema.
Collapse
Affiliation(s)
- Olga Kurow
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Rima Nuwayhid
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Matthias Steinert
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Stefan Langer
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Sebastian Krämer
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Isabella B Metelmann
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Zhang L, Liao W, Chen S, Chen Y, Cheng P, Lu X, Ma Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front Oncol 2023; 13:1146477. [PMID: 37077835 PMCID: PMC10106600 DOI: 10.3389/fonc.2023.1146477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Three-dimensional cell culture technology (3DCC) sits between two-dimensional cell culture (2DCC) and animal models and is widely used in oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-dimensional space, better simulating the in vivo growth environment of tumors, including hypoxia, nutrient concentration gradients, micro angiogenesis mimicism, and the interaction between tumor cells and the tumor microenvironment matrix. 3DCC has unparalleled advantages when compared to animal models, being more controllable, operable, and convenient. This review summarizes the comparison between 2DCC and 3DCC, as well as recent advances in different methods to obtain 3D models and their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Long Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Liao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yukun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Marrero D, Guimera A, Maes L, Villa R, Alvarez M, Illa X. Organ-on-a-chip with integrated semitransparent organic electrodes for barrier function monitoring. LAB ON A CHIP 2023; 23:1825-1834. [PMID: 36810654 DOI: 10.1039/d2lc01097f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organs-on-a-chip (OoC) are cell culture platforms that replicate key functional units of tissues in vitro. Barrier integrity and permeability evaluation are of utmost importance when studying barrier-forming tissues. Impedance spectroscopy is a powerful tool and is widely used to monitor barrier permeability and integrity in real-time. However, data comparison across devices is misleading due to the generation of a non-homogenous field across the tissue barrier, making impedance data normalization very challenging. In this work, we address this issue by integrating PEDOT:PSS electrodes for barrier function monitoring with impedance spectroscopy. The semitransparent PEDOT:PSS electrodes cover the entire cell culture membrane providing a homogenous electric field across the entire membrane making the cell culture area equally accountable to the measured impedance. To the best of our knowledge, PEDOT:PSS has never been used solely to monitor the impedance of cellular barriers while enabling optical inspection in the OoC. The performance of the device is demonstrated by lining the device with intestinal cells where we monitored barrier formation under flow conditions, as well as barrier disruption and recovery under exposure to a permeability enhancer. The barrier tightness and integrity, and the intercellular cleft have been evaluated by analyzing the full impedance spectrum. Furthermore, the device is autoclavable paving the way toward more sustainable OoC options.
Collapse
Affiliation(s)
- Denise Marrero
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Anton Guimera
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Laure Maes
- Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Gent, Belgium
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| |
Collapse
|
49
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
50
|
Feng W, Chittò M, Moriarty TF, Li G, Wang X. Targeted Drug Delivery Systems for Eliminating Intracellular Bacteria. Macromol Biosci 2023; 23:e2200311. [PMID: 36189899 DOI: 10.1002/mabi.202200311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Indexed: 01/19/2023]
Abstract
The intracellular survival of pathogenic bacteria requires a range of survival strategies and virulence factors. These infections are a significant clinical challenge, wherein treatment frequently fails because of poor antibiotic penetration, stability, and retention in host cells. Drug delivery systems (DDSs) are promising tools to overcome these shortcomings and enhance the efficacy of antibiotic therapy. In this review, the classification and the mechanisms of intracellular bacterial persistence are elaborated. Furthermore, the systematic design strategies applied to DDSs to eliminate intracellular bacteria are also described, and the strategies used for internalization, intracellular activation, bacterial targeting, and immune enhancement are highlighted. Finally, this overview provides guidance for constructing functionalized DDSs to effectively eliminate intracellular bacteria.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,AO Research Institute Davos, Davos, 7270, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, Davos, 7270, Switzerland
| | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|