1
|
Wu T, Yang M, Jin L, Yu H, Huang H, Wu Y, Li B, Tu Y, Wan X, Liu J. Theaflavin-3,3'-digallate (TF3) attenuated constipation by promoting gastrointestinal motility and modulating the gut microbiota: A comparative study of TF3 and the anti-constipation drug mosapride in mice. Food Chem 2025; 465:142048. [PMID: 39571432 DOI: 10.1016/j.foodchem.2024.142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
TF3 is a functional pigment formed during the process of black tea. This study aims to explore the anti-constipation effects of TF3 and compare its efficacy with the anti-constipation drug mosapride. Result showed that both TF3 and mosapride increased fecal water content and promoted gastrointestinal (GI) motility, but TF3 was more effective in restoring excitatory neurotransmitters like gastrin (Gas), motilin (MTL), and substance P (SP). TF3 uniquely altered the gut microbiota profile and restored the bacterial community at the phylum level. TF3 targeted specific bacteria such as Alloprevotella, Bacteroides, and Parabacteroides, while mosapride affected different bacterial groups. Significant changes in Bacteroides and Prevotellaceae UCG-001 were linked to constipation improvement. Importantly, TF3 did not synergize with mosapride in alleviating constipation. These findings highlight TF3's unique role in modulating gut microbiota to relieve constipation and suggest great potential to develop functional foods with anti-constipation properties using tea-derived polyphenols.
Collapse
Affiliation(s)
- Tingbo Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Mingxue Yang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Leyi Jin
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haonan Yu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haitao Huang
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, Zhejiang, PR China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
3
|
Yan Z, Chen Q, Ren Y, Shi J, Xu Z, Xue Y, Geng Y. Maltodextrin alleviates constipation induced by loperamide hydrochloride in mice. FOOD BIOSCI 2025; 63:105675. [DOI: 10.1016/j.fbio.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Wang LS, Wu JX, Zhang F, Huang Y, Jiang YX, Li YH. Metabolomics and gut microbiota analysis reveal the differential efficacy of areca nut and charred areca nut in treating constipation. Front Nutr 2024; 11:1455824. [PMID: 39346640 PMCID: PMC11427381 DOI: 10.3389/fnut.2024.1455824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background Areca nut (AN) is a traditional Chinese herbal medicine used for centuries to treat gastrointestinal (GI) disorders. Charred AN (CAN) is a processed product of AN with similar therapeutic effects. This study aimed to investigate the therapeutic mechanisms of AN and CAN for constipation via metabolomics and gut microbiota analysis. Methods In this study, the rats were randomly divided into 5 groups (n = 6): control, constipation model, positive drug, AN treatment, and CAN treatment groups. Constipation was induced by intragastric administration of loperamide hydrochloride, followed by 14-day treatment with mosapride, AN, or CAN. The efficacy difference between AN and CAN was assessed by evaluating the weight gain, fecal water content, GI transit rate, colonic histopathology, serum levels of GI hormones, gut microbiota, and fecal metabolites. Results The results demonstrated that both AN and CAN could alleviate loperamide-induced constipation. Furthermore, they significantly elevated the serum levels of motilin, vasoactive intestinal peptide, substance P, and acetylcholine. 16S rRNA analysis revealed that AN regulated the relative abundance of Bacillus, UCG-005, norank_f_Muribaculaceae, Candidatus_Saccharimonas, and Ruminococcus, whereas CAN modulate the relative abundance of Lactobacillus, Bacillus, norank_f_Muribaculaceae, Ruminococcus, unclassified_f_Oscillospiraceae, and unclassified_f_Prevotellaceae. Moreover, the metabolic profile of AN- and CAN-treated rats was also different, where AN treatment involved pathways of citrate cycle (TCA) and tyrosine, alanine, aspartate, and glutamate metabolisms. Whereas CAN treatment involved pathways of steroid and primary bile acid biosynthesis, as well as pyrimidine and purine metabolisms. Spearman correlation analysis indicated a close relationship between gut microbiota and fecal metabolites. Conclusion In summary, this study revealed that AN may protect GI mucosa, enhance GI motility, and alleviate constipation symptoms by regulating the relative abundance of specific gut microbiota (Bacillus, UCG-005, norank_f_Muribaculaceae, Candidatus_Saccharimonas, Ruminococcus) as well as citrate cycle or tyrosine, alanine, aspartate, and glutamate metabolic pathways. Furthermore, CAN was observed to promote gastric emptying and intestinal propulsion, thereby alleviating constipation, by modulating the relative abundance of specific gut microbiota (Lactobacillus, Bacillus, norank_f_Muribaculaceae, Ruminococcus, unclassified_f_Oscillospiraceae, unclassified_f_Prevotellaceae) as well as steroid and primary bile acid biosynthesis, as well as pyrimidine and purine metabolic pathways.
Collapse
Affiliation(s)
| | | | - Fang Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, The Second Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou, China
| | | | | | - Yong-hui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, The Second Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Li Y, Tong WD. Association between dietary protein intake and constipation: Data from the National Health and nutrition examination survey 2005-2010. Neurogastroenterol Motil 2024; 36:e14795. [PMID: 38651659 DOI: 10.1111/nmo.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND The association between dietary protein intake and constipation remains inconclusive. The aim of this study was to investigate whether dietary protein intake is associated with constipation. METHODS This cross-sectional study included 13,941 adults from the 2005 to 2010 National Health and Nutrition Examination Survey. A weighted logistic regression analysis was used to control for confounding factors. In addition, weighted interaction and stratified analyses were conducted to ascertain the potential modifying factors. RESULTS The prevalence of constipation was 7.5% when constipation was defined by stool consistency and 3.5% when constipation was defined by stool frequency. After adjusting for covariates, an increase in dietary protein intake of 10 g was not associated with constipation, as defined by stool frequency (OR = 0.94, 95% CI = 0.54, 1.62) or stool consistency (OR = 1.02, 95% CI = 0.75, 1.39). Subgroup analyses revealed that dietary protein intake was associated with an increase in constipation defined by stool consistency risk in participants who consumed a low amount of carbohydrates (OR = 1.08, 95% CI = 1.02-1.14 for every 10-g increase in protein intake), but a decrease in risk in participants in the moderate-carbohydrate group (OR = 0.94, 95% CI = 0.89-0.99 for every 10-g increase in protein intake), suggesting a significant interaction (p = 0.001). CONCLUSION & INFERENCES Dietary protein intake is not associated with stool consistency or frequency-defined constipation. However, the association between dietary protein intake and constipation defined by stool consistency in participants with a low carbohydrate intake differed from that in participants with a moderate carbohydrate intake.
Collapse
Affiliation(s)
- Yi Li
- Gastric and Colorectal Division, Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Dong Tong
- Gastric and Colorectal Division, Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Huang Y, Guo Y, Li X, Xiao Y, Wang Z, Song L, Ren Z. Effects of Lactiplantibacillus plantarum GUANKE on Diphenoxylate-Induced Slow Transit Constipation and Gut Microbiota in Mice. Nutrients 2023; 15:3741. [PMID: 37686774 PMCID: PMC10490327 DOI: 10.3390/nu15173741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Slow transit constipation (STC) is a prevalent gastrointestinal condition with slow transit, and some probiotics can effectively relieve constipation, but the exact mechanisms have not been fully understood. In this study, we evaluate the impact of Lactiplantibacillus plantarum GUANKE (GUANKE) on diphenoxylate-induced slow transit constipation and speculate on the underlying mechanisms in a mouse model. Administration of L. plantarum GUANKE alleviated constipation indexes, including defecation time, fecal output and water content, and gastrointestinal transit ratio. In addition, GUANKE restored the protein expression of constipation-related intestinal factors (aquaporins (AQPs) and interstitial Cajal cells (ICCs)) in colon tissues measured using immunofluorescence staining; regulated the neurotransmitters and hormones, such as increased levels of 5-hydroxytryptamine, substance P, and motilin; and decreased levels of vasoactive intestinal peptide and nitric oxide in serum, as measured by an ELISA. 16S rRNA and correlation analysis of feces indicated that GUANKE administration effectively reduced constipation-induced Prevotella enrichment and suggested a potential contribution of Prevotella to diphenoxylate-induced STC in mice. GUANKE had no effect on short-chain fatty acids (SCFAs) in cecum content. This study revealed that GUANKE may alleviate constipation in mice through regulating intestinal neurotransmitter and hormone release and altering specific bacterial taxa, rather than by affecting SCFAs and the diversity of microbiota in the gut. Further research is needed to confirm if the findings observed in this study will be consistent in other animal studies or clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Liqiong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.H.); (Y.G.); (X.L.); (Y.X.); (Z.W.)
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.H.); (Y.G.); (X.L.); (Y.X.); (Z.W.)
| |
Collapse
|
7
|
Venkataraman R, Shenoy R, Ahire JJ, Neelamraju J, Madempudi RS. Effect of Bacillus coagulans Unique IS2 with Lactulose on Functional Constipation in Adults: a Double-Blind Placebo Controlled Study. Probiotics Antimicrob Proteins 2023; 15:379-386. [PMID: 34599466 DOI: 10.1007/s12602-021-09855-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
In the present double-blind randomised study, the efficacy of combination of Bacillus coagulans Unique IS2 and lactulose was evaluated in the treatment of functional constipation in adults. One-fifty participants diagnosed with functional constipation (Rome III criteria) were randomised (1:1:1) and supplemented daily with 15 mL suspension of probiotic (B. coagulans Unique IS2, 2 × 109 spores) with lactulose (10 g) (group 1) or lactulose (10 g) (group 2) or placebo (water) (group 3) for 4 weeks. The primary (stool frequency) and secondary outome measures (stool consistency, sensation of incomplete evacuation, defecation- and abdominal-pain) were recorded weekly for up to 4 weeks. Bacillus coagulans Unique IS2 with lactulose showed significant changes in stool frequency as compared to lactulose treatment; however, at the end of the trial, it was found insignificant due to the gradual increase of stool frequency score of lactulose treatment. The changes observed in stool consistency were early (2nd week) and remained consistent up to end of the trial. The significant reduction of sensation of incomplete evacuation, defecation-, and abdominal-pain correlated with the strains ability to produce short-chain fatty acids. No adverse events were observed in any of the groups, and all the vital parameters were normal during the course of the study. Overall, results indicated that B. coagulans Unique IS2 addition to lactulose reduced time required to relieve constipation as compared to lactulose alone. In conclusion, B. coagulans Unique IS2 with lactulose is more effective than lactulose alone to relieve symptoms of constipation in a shorter period. Trial registration: CTRI/2018/11/016399, dated 22/11/2018.
Collapse
Affiliation(s)
- R Venkataraman
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| | - R Shenoy
- Adichunchanagiri Hospital and Research Centre, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| | - J J Ahire
- Centre for Research & Development, Unique Biotech Ltd, Plot No. 2, Phase-II, MN Park, Hyderabad, Telangana, 500078, India
| | - J Neelamraju
- Centre for Research & Development, Unique Biotech Ltd, Plot No. 2, Phase-II, MN Park, Hyderabad, Telangana, 500078, India
| | - R S Madempudi
- Centre for Research & Development, Unique Biotech Ltd, Plot No. 2, Phase-II, MN Park, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
8
|
Ghalandari N, Assarzadegan F, Habibi SAH, Esmaily H, Malekpour H. Efficacy of Probiotics in Improving Motor Function and Alleviating Constipation in Parkinson's Disease: A Randomized Controlled Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e137840. [PMID: 38116573 PMCID: PMC10728848 DOI: 10.5812/ijpr-137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 12/21/2023]
Abstract
Background Parkinson's disease (PD) is one of the common neurodegenerative diseases, and there has been an increasing interest in the potential role of intestinal dysbiosis in its pathogenesis and related gastrointestinal complications such as constipation. Objectives This study aims to evaluate the effects of multi-strain probiotics on constipation and motor function in PD patients. Methods This study was a blinded, randomized controlled trial (RCT) that involved 27 PD patients who were diagnosed with constipation according to the ROME IV criteria for functional constipation. The primary outcome measured before and after the intervention in both the placebo and probiotic groups was the frequency of defecation. Secondary outcomes evaluated were laxative use, sense of complete evacuation, Bristol Stool Scale for consistency, and Unified Parkinson's Disease Rating Scale (UPDRS) scale. The study lasted for eight weeks. Both groups also were educated about lifestyle modification. Results Of 30 included patients (15 in each group), 13 were women, and 17 were men. Three patients dropped out of the study. Between-group analysis showed that the frequency of bowel movements significantly increased in the probiotic group 4 [3 - 5] in comparison with 2 [2 - 3] in placebo (P = 0.02). Stool consistency also improved in the probiotic group (P = 0.04). However, there were no significant differences in other outcomes. The within-group analysis showed improvement in stool consistency in both probiotics and placebo groups (P = 0.01 and P = 0.007, respectively), while stool frequency and sense of complete evacuation significantly improved only in the probiotic group (P < 0.05). Conclusions This study demonstrated that multi-strain probiotics could improve frequency, consistency, and sense of complete evacuation in PD patients, while there was no significant effect on motor functions in 8 weeks. It is suggested that additional studies be conducted on longer-term effects.
Collapse
Affiliation(s)
- Nasibeh Ghalandari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Assarzadegan
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hassan Habibi
- Department of Gastroenterology and Liver Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaily
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Department of Gastroenterology and Liver Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Jafari SS, Hashemi SM, Sadeghi B, Almasi-Hashiani A. Ability of polymicrobial probiotic and mono-strain probiotic to reduce functional abdominal pain in children: a randomized clinical trial. Clin Exp Pediatr 2022; 65:589-594. [PMID: 36457200 PMCID: PMC9742761 DOI: 10.3345/cep.2022.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/02/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Chronic abdominal pain is a common problem in childhood. PURPOSE Due to the prevalence of functional abdominal pain (FAP) and the importance of probiotics, this study aimed to compare the ability of 2 probiotics to reduce and improve FAP in children. METHODS This open-label randomized clinical trial included 116 children aged 5-15 years with FAPP who met the ROME-4 criteria and were referred to the gastrointestinal clinic of Amir-Kabir Hospital in Arak in 2020-2021. The children were randomly allocated to receive polymicrobial probiotic (PMP group) or mono-strain probiotic (MSP group) once daily for 4 weeks. The standard Wong-Baker Faces scale was used to assess symptom severity. RESULTS Of the 116 subjects, 62 (53.5%) were boys; the mean participant age was 7.39 years (standard deviation, 3.4 years). A significant intergroup difference (P=0.003) was observed in pain severity; 10.34% of children in the PMP group had no pain, while all patients in the MSP group reported low-degree pain. There was no intergroup difference in mean pain score (P=0.466), but it decreased over time in both groups (P= 0.001). CONCLUSION Although significantly more children were painless in the PMP versus MSP group, no significant intergroup difference in pain score was noted and symptom severity decreased in both groups. A future study with a placebo group is recommended to validate our findings.
Collapse
Affiliation(s)
- Seyed Sajad Jafari
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Mojtaba Hashemi
- Department of Pediatric Gastroenterology, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, Arak University of Medical Sciences, Arak, Iran.,Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
10
|
Kim JE, Roh YJ, Choi YJ, Lee SJ, Jin YJ, Song HJ, Seol AY, Son HJ, Hong JT, Hwang DY. Dysbiosis of Fecal Microbiota in Tg2576 Mice for Alzheimer's Disease during Pathological Constipation. Int J Mol Sci 2022; 23:ijms232314928. [PMID: 36499254 PMCID: PMC9736912 DOI: 10.3390/ijms232314928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Tg2576 transgenic mice for Alzheimer's disease (AD) exhibited significant phenotypes for neuropathological constipation, but no research has been conducted on the association of the fecal microbiota with dysbiosis. The correlation between fecal microbiota composition and neuropathological constipation in Tg2576 mice was investigated by examining the profile of fecal microbiota and fecal microbiota transplantation (FMT) in 9-10-month-old Tg2576 mice with the AD phenotypes and constipation. Several constipation phenotypes, including stool parameters, colon length, and histopathological structures, were observed prominently in Tg2576 mice compared to the wild-type (WT) mice. The fecal microbiota of Tg2576 mice showed decreases in Bacteroidetes and increases in the Firmicutes and Proteobacteria populations at the phylum level. The FMT study showed that stool parameters, including weight, water content, and morphology, decreased remarkably in the FMT group transplanted with a fecal suspension of Tg2576 mice (TgFMT) compared to the FMT group transplanted with a fecal suspension of WT mice (WFMT). The distribution of myenteric neurons and the interstitial cells of Cajal (ICC), as well as the enteric nervous system (ENS) function, remained lower in the TgFMT group. These results suggest that the neuropathological constipation phenotypes of Tg2576 mice may be tightly linked to the dysbiosis of the fecal microbiota.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yun-Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Su-Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - A-Yun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: ; Tel.: +82-55-350-5388
| |
Collapse
|
11
|
Mitelmão FCR, Häckel K, Bergamaschi CDC, Gerenutti M, Silva MT, Balcão VM, Vila MMDC. The effect of probiotics on functional constipation in adults: A randomized, double-blind controlled trial. Medicine (Baltimore) 2022; 101:e31185. [PMID: 36316826 PMCID: PMC9622669 DOI: 10.1097/md.0000000000031185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Two formulations were developed in the form of an oral sachet containing probiotics, and their efficacy and safety were evaluated in adults with functional constipation. METHODS One formulation with Lactobacillus acidophilus, Bifidobacterium bifidum and Lactobacillus rhamnosus (3 billion Colony Forming Units - CFU); and another with Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus rhamnosus, Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium lactis, Lactobacillus casei, Bifidobacterium animallis (8 billion CFU). The participants were randomized in a 3-arm parallel study and one oral sachet was auto-administered once a day for 30 days. RESULTS Primary outcomes were improvement in increasing the frequency of weekly bowel movements and improvement in stool quality. Secondary outcomes were number of adverse events. In the first week one observed an increase in stool frequency and in the quality of stools, showing an improvement in constipation. No statistically significant differences were observed between the three treatment groups in relation to these outcomes (P ≥ .05). Only one adverse event was observed in a patient of group 2, related to abdominal pain. CONCLUSION The two probiotic cocktails were effective in improving the symptoms of functional constipation, by increasing both the weekly frequency of evacuation and stool quality, and were deemed safe. Clinicaltrials.gov number: NCT04437147.
Collapse
Affiliation(s)
| | - Karin Häckel
- Clinic of Gastroenterology Dr Karin Häckel, Sorocaba/SP, Brazil
| | | | - Marli Gerenutti
- Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba/SP, Brazil
| | - Marcus Tolentino Silva
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Victor Manuel Balcão
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário DE Santiago, Aveiro, Portugal
| | - Marta Maria Duarte Carvalho Vila
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
- *Correspondence: Marta Maria Duarte Carvalho Vila, University of Sorocaba, Rodovia RaposoTavares Km 92.5, Sorocaba/SP, Brazil (e-mail: )
| |
Collapse
|
12
|
Gut microbiota: a new avenue to reveal pathological mechanisms of constipation. Appl Microbiol Biotechnol 2022; 106:6899-6913. [PMID: 36190540 DOI: 10.1007/s00253-022-12197-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipation. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs for the treatment of constipation from the perspective of intestinal flora. KEY POINTS: • This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host. • The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under constipation. • The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation therapies.
Collapse
|
13
|
Yang C, Bai X, Hu T, Xue X, Su X, Zhang X, Wu T, Zhang M, Shen X, Dong X. Integrated metagenomics and targeted-metabolomics analysis of the effects of phenylalanine on loperamide-induced constipation in rats. Front Microbiol 2022; 13:1018008. [PMID: 36246281 PMCID: PMC9561758 DOI: 10.3389/fmicb.2022.1018008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Functional constipation is a common functional gastrointestinal disease. In our previous study, we found that the gut microbiota structure was disordered and the level of phenylalanine (Phe) in serum was decreased in constipated women. We conducted the present study to elucidate the role of Phe in remodeling the composition of gut microbiota and the relationship between gut microbiota and serum metabolites. Here, we demonstrated that Phe treatment significantly enhanced intestinal motility, suppressed inflammatory responses, and prevented intestinal barrier damage in rats with loperamide (Lop)-induced constipation. By metagenomic sequencing, the disbalanced gut microbial profile was analyzed in constipated rats. Phe treatment reversed changes in the abundance of several gut bacteria at the phylum, genus, and species levels. Further, we observed distinct metabolic patterns in constipated rats through targeted metabolomics and identified constipation-related gut microbial species linked to changes in circulating neurotransmitter metabolites. The abundances of species s_Lactobacillus murinus, s_Enterococcus italicus, s_Lactobacillus animalis, s_Lactobacillus apodemi, s_Enterococcus faecalis, and s_Lactobacillus backii were positively correlated with L-asparagine, L-Glutamic acid, Putrescine, and Spermidine levels. The abundances of s_Lactobacillus johnsonii and s_Butyricimonas virosa were negatively correlated with L-asparagine, L-Glutamic acid, Putrescine, and Spermidine levels. Taken together, our findings suggest that Phe can ameliorate the development of Lop-induced constipation in rats by remodeling the gut microbial community structure and changing metabolite levels.
Collapse
Affiliation(s)
- Chuanli Yang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xinshu Bai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianjiao Hu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Xue
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohu Su
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuan Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Teng Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingxia Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Xiaobing Shen,
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Xiushan Dong,
| |
Collapse
|
14
|
Yuan Y, Yin M, Chen L, Liu F, Chen M, Zhong F. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Wang JK, Wei W, Zhao DY, Wang HF, Zhang YL, Lei JP, Yao SK. Intestinal mucosal barrier in functional constipation: Dose it change? World J Clin Cases 2022; 10:6385-6398. [PMID: 35979313 PMCID: PMC9294902 DOI: 10.12998/wjcc.v10.i19.6385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The intestinal mucosal barrier is the first line of defense against numerous harmful substances, and it contributes to the maintenance of intestinal homeostasis. Recent studies reported that structural and functional changes in the intestinal mucosal barrier were involved in the pathogenesis of several intestinal diseases. However, no study thoroughly evaluated this barrier in patients with functional constipation (FC). AIM To investigate the intestinal mucosal barrier in FC, including the mucus barrier, intercellular junctions, mucosal immunity and gut permeability. METHODS Forty FC patients who fulfilled the Rome IV criteria and 24 healthy controls were recruited in the Department of Gastroenterology of China-Japan Friendship Hospital. The colonic mucus barrier, intercellular junctions in the colonic epithelium, mucosal immune state and gut permeability in FC patients were comprehensively examined. Goblet cells were stained with Alcian Blue/Periodic acid Schiff (AB/PAS) and counted. The ultrastructure of intercellular junctional complexes was observed under an electron microscope. Occludin and zonula occludens-1 (ZO-1) in the colonic mucosa were located and quantified using immunohistochemistry and quantitative real-time polymerase chain reaction. Colonic CD3+ intraepithelial lymphocytes (IELs) and CD3+ lymphocytes in the lamina propria were identified and counted using immunofluorescence. The serum levels of D-lactic acid and zonulin were detected using enzyme-linked immunosorbent assay. RESULTS Compared to healthy controls, the staining of mucus secreted by goblet cells was darker in FC patients, and the number of goblet cells per upper crypt in the colonic mucosa was significantly increased in FC patients (control, 18.67 ± 2.99; FC, 22.42 ± 4.09; P = 0.001). The intercellular junctional complexes in the colonic epithelium were integral in FC patients. The distribution of mucosal occludin and ZO-1 was not altered in FC patients. No significant differences were found in occludin (control, 5.76E-2 ± 1.62E-2; FC, 5.17E-2 ± 1.80E-2; P = 0.240) and ZO-1 (control, 2.29E-2 ± 0.93E-2; FC, 2.68E-2 ± 1.60E-2; P = 0.333) protein expression between the two groups. The mRNA levels in occludin and ZO-1 were not modified in FC patients compared to healthy controls (P = 0.145, P = 0.451, respectively). No significant differences were observed in the number of CD3+ IELs per 100 epithelial cells (control, 5.62 ± 2.06; FC, 4.50 ± 2.16; P = 0.070) and CD3+ lamina propria lymphocytes (control, 19.69 ± 6.04/mm2; FC, 22.70 ± 11.38/mm2; P = 0.273). There were no significant differences in serum D-lactic acid [control, 5.21 (4.46, 5.49) mmol/L; FC, 4.63 (4.31, 5.42) mmol/L; P = 0.112] or zonulin [control, 1.36 (0.53, 2.15) ng/mL; FC, 0.94 (0.47, 1.56) ng/mL; P = 0.185] levels between FC patients and healthy controls. CONCLUSION The intestinal mucosal barrier in FC patients exhibits a compensatory increase in goblet cells and integral intercellular junctions without activation of mucosal immunity or increased gut permeability.
Collapse
Affiliation(s)
- Jun-Ke Wang
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Wei
- Department of Clinical Nutrition and Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dong-Yan Zhao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui-Fen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Li Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie-Ping Lei
- Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
16
|
Lu D, Pi Y, Ye H, Wu Y, Bai Y, Lian S, Han D, Ni D, Zou X, Zhao J, Zhang S, Kemp B, Soede N, Wang J. Consumption of Dietary Fiber with Different Physicochemical Properties during Late Pregnancy Alters the Gut Microbiota and Relieves Constipation in Sow Model. Nutrients 2022; 14:2511. [PMID: 35745241 PMCID: PMC9229973 DOI: 10.3390/nu14122511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Constipation is a common problem in sows and women during late pregnancy. Dietary fiber has potential in the regulation of intestinal microbiota, thereby promoting intestinal motility and reducing constipation. However, the effects of fibers with different physicochemical properties on intestinal microbe and constipation during late pregnancy have not been fully explored. In this study, a total of 80 sows were randomly allocated to control and one of three dietary fiber treatments from day 85 of gestation to delivery: LIG (lignocellulose), PRS (resistant starch), and KON (konjaku flour). Results showed that the defecation frequency and fecal consistency scores were highest in PRS. PRS and KON significantly increased the level of gut motility regulatory factors, 5-hydroxytryptamine (5-HT), motilin (MTL), and acetylcholinesterase (AChE) in serum. Moreover, PRS and KON promoted the IL-10 level and reduced the TNF-α level in serum. Furthermore, maternal PRS and KON supplementation significantly reduced the number of stillborn piglets. Microbial sequencing analysis showed that PRS and KON increased short-chain fatty acids (SCFAs)-producing genera Bacteroides and Parabacteroides and decreased the abundance of endotoxin-producing bacteria Desulfovibrio and Oscillibacter in feces. Moreover, the relative abundance of Turicibacter and the fecal butyrate concentration in PRS were the highest. Correlation analysis further revealed that the defecation frequency and serum 5-HT were positively correlated with Turicibacter and butyrate. In conclusion, PRS is the best fiber source for promoting gut motility, which was associated with increased levels of 5-HT under specific bacteria Turicibacter and butyrate stimulation, thereby relieving constipation. Our findings provide a reference for dietary fiber selection to improve intestinal motility in late pregnant mothers.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
- Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China; (D.N.); (X.Z.)
| | - Hao Ye
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands; (H.Y.); (B.K.); (N.S.)
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Shuai Lian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Dongjiao Ni
- Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China; (D.N.); (X.Z.)
| | - Xinhua Zou
- Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China; (D.N.); (X.Z.)
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands; (H.Y.); (B.K.); (N.S.)
| | - Nicoline Soede
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands; (H.Y.); (B.K.); (N.S.)
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| |
Collapse
|
17
|
YU Z, HAO L, LI Z, SUN J, CHEN H, HUO H, LI X, SHAN Z, LI H. Correlation between slow transit constipation and spleen deficiency, and gut microbiota: a pilot study. J TRADIT CHIN MED 2022; 42:353-363. [PMID: 35610004 PMCID: PMC9924678 DOI: 10.19852/j.cnki.jtcm.20220408.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the effect of slow transit constipation (STC) and spleen deficiency on gut microbiota, and the mechanism underlying the action that the positive drug Maren Runchang (MR) alleviates STC. METHODS STC was induced, using the cathartic method of Senna and the hunger-fullness disorder method, in ICR mice; one group of model mice was treated with MR (6.24 g/kg). The changes in the general condition, fecal parameters, D-xylose content in the serum, intestinal propulsion rate, and histopathology of the colon were assessed after STC induction in the control, model, and MR groups. Fecal microbiota transplantation (FMT) was performed from STC mice into pseudo germ-free mice. Changes in the contents of substance P (SP), vasoactive intestinal peptide (VIP), and gut microbiota in STC mice and pseudo germ-free mice were assessed after FMT. RESULTS Compared with the control group, the model mice showed the following results: the time of the first black stool was significantly longer ( 0.01), the number and weight of black stools were significantly reduced within 6 h ( 0.05), the D-xylose content in the serum was significantly reduced ( < 0.05), the intestinal propulsion rate decreased ( < 0.01), the content of VIP in colon tissue significantly increased ( < 0.05), and SP content in the colon tissue significantly decreased ( < 0.01); moreover, the colon showed significant inflame-mation and injury. Furthermore, the abundance of Firmicutes was increased, the abundance of Bacteroides decreased, and the abundance of decreased, while the abundance of the conditional pathogenic bacteria and Klebsiella increased. However, after treatment with MR, the time of the first black stool decreased (0.01), the number of black stools within 6 h increased, and the intestinal propulsion rate increased ( < 0.05). Moreover, the content of D-xylose in the serum and the content of VIP in colon tissue significantly decreased ( < 0.05), the content of SP in colon tissue significantly increased ( < 0.01), and colon inflammation significantly improved. Additionally, the abundance of Firmicutes decreased, and the abundance of Bacteroides increased. The abundance of increased, and the abundance of decreased. In the model + FMT group, compared with control + FMT group, the content of VIP in colon tissue decreased ( < 0.05), the content of SP in colon tissue significantly increased ( < 0.01), and the abundance of probiotics, such as , decreased. In the MR + FMT group, compared with the model + FMT group, the content of VIP in colon tissue increased, the content of SP in colon tissue significantly decreased ( < 0.01), and the abundance of probiotics increased. CONCLUSIONS STC mice with spleen deficiency show a decreased abundance of beneficial bacteria, such as , and an increased abundance of the conditional pathogenic bacteria . Furthermore, the mechanism of action of MR in treating STC may involve the regulation of intestinal movement, reduction of intestinal inflammation, elevation of intestinal absorption, and regulation of gut microbiota.
Collapse
Affiliation(s)
- Zeyue YU
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Liyu HAO
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Zongyuan LI
- 2 Jiangsu University, Zhenjiang 212013, China
| | - Jianhui SUN
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Hongying CHEN
- 3 Yunnan University of Traditional Chinese Medicine, Kunming 650504, China
| | - Hairu HUO
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Xiaoqin LI
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Zhongchao SHAN
- 4 Jiangxi University of Traditional Chinese Medicine, Nanning 330004, China
| | - Hongmei LI
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
- Pro. LI Hongmei, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China.
| |
Collapse
|
18
|
Loman BR, Russart KLG, Grant CV, Lynch AJ, Bailey MT, Pyter LM. Mammary tumors alter the fecal bacteriome and permit enteric bacterial translocation. BMC Cancer 2022; 22:245. [PMID: 35248004 PMCID: PMC8897840 DOI: 10.1186/s12885-022-09274-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cancer patients experience gastrointestinal and behavioral symptoms, and are at increased risk of systemic infection and inflammation. These conditions are a major source of morbidity and decreased quality of life prior to cancer treatment, but poorly defined etiologies impede successful treatment. The gastrointestinal microbiota shape inflammation, influence cancer progression and treatment, and colonize tumors. However, research has not directly determined if peripheral tumors influence the microbiome and intestinal physiology, thus influencing gastrointestinal and behavioral symptoms. Therefore, the purpose of this study was to examine consequences of orthotopic, syngeneic mammary tumor implantation, growth, and resection on fecal bacteriome composition and intestinal barrier function in relation to systemic inflammation and enteric bacterial translocation in mice. Methods Female mice were randomized to 3 experimental groups: sham surgical control, tumor recipients, and tumor recipients later receiving tumor-resection. Mice were sacrificed three weeks after tumor implantation or resection for collection of stool, colon, spleen, and brain tissue and analysis. Results Tumor-bearing mice exhibited several markers of colonic barrier disruption, including dampened expression of tight junction proteins (Cldn1 and Ocln) and elevated circulating lipopolysaccharide binding protein (LBP). Compromised colonic barrier integrity was associated with altered fecal bacterial profiles in tumor-mice, including lower relative abundance of Lactobacillus, but higher Bacteroides. Consistent with colonic barrier disruption and altered microbiomes, tumor-mice displayed markers of systemic inflammation including splenomegaly, higher splenic bacterial load, and elevated splenic and brain pro-inflammatory cytokines. Several bacteria cultured from spleens had 16S rRNA gene amplicons matching those in fecal samples, suggesting they were of intestinal origin. Fecal Lactobacillus was highly-interrelated to physiological parameters disrupted by tumors via correlation network analysis. Tumor resection ameliorated circulating LBP, splenomegaly, and splenic cytokines, but not other parameters associated with loss of colonic barrier integrity and bacterial translocation. Conclusions Orthotopic mammary tumors alter the microbiome, reduce intestinal barrier function, increase translocation of enteric bacteria, and alter systemic inflammation. This provides insight into how tumors commence gastrointestinal and behavioral symptoms prior to treatment, and identify targets for future therapeutics, such as probiotic Lactobacillus supplementation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09274-0.
Collapse
|
19
|
Zhang S, Wang R, Li D, Zhao L, Zhu L. Role of gut microbiota in functional constipation. Gastroenterol Rep (Oxf) 2021; 9:392-401. [PMID: 34733524 PMCID: PMC8560038 DOI: 10.1093/gastro/goab035] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 07/18/2021] [Indexed: 12/19/2022] Open
Abstract
Functional constipation (FC) is common, yet the etiology is not clear. Accumulating evidence suggests an association between FC and abnormal gut microbiota. The relationship between the gut microbiota and the gut transit is likely bidirectional. This review summarizes the current evidence regarding the impact of gut microbiota on the pathogenesis of FC. By modulating the colonic motility, secretion, and absorption, gut microbiota may contribute to the development of FC through microbial metabolic activities involving bile acids, short-chain fatty acids, 5-hydroxytryptamine, and methane. In support of the key roles of the gut microbiota in FC, treatment with probiotics, prebiotics, synbiotics, and traditional Chinese medicine often result in compositional and functional changes in the gut microbiota. Further studies on the pathogenesis of FC and the therapeutic mechanism of microecological agents will provide a knowledge base for better management of FC.
Collapse
Affiliation(s)
- Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Ruixin Wang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Danyan Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
20
|
Wang JK, Yao SK. Roles of Gut Microbiota and Metabolites in Pathogenesis of Functional Constipation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5560310. [PMID: 34603471 PMCID: PMC8481049 DOI: 10.1155/2021/5560310] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Functional constipation (FC), a condition characterized by heterogeneous symptoms (infrequent bowel movements, hard stools, excessive straining, or a sense of incomplete evacuation), is prevalent over the world. It is a multifactorial disorder and can be categorized into four subgroups according to different pathological mechanisms: normal transit constipation (NTC), slow transit constipation (STC), defecatory disorders (DD), and mixed type. Recently, growing evidence from human and animals has pointed that there was a strong association between gut microbiota and FC based on the brain-gut-microbiome axis. Studies have reported that the main characteristics of gut microbiota in FC patients were the relative decrease of beneficial bacteria such as Lactobacillus and Bifidobacterium, the relative increase of potential pathogens, and the reduced species richness. Gut microbiota can modulate gut functions through the metabolites of bacterial fermentation, among which short-chain fatty acids (SCFAs), secondary bile salts (BAs), and methane occupied more important positions and could trigger the release of gut hormones from enteroendocrine cells (EECs), such as 5-hydroxytryptamine (5-HT), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Subsequently, these gut hormones can influence gut sensation, secretion, and motility, primarily through activating specific receptors distributed on smooth muscle cells, enteric neurons, and epithelial cells. However, research findings were inconsistent and even conflicting, which may be partially due to various confounding factors. Future studies should take the associated confounders into consideration and adopt multiomics research strategies to obtain more complete conclusions and to provide reliable theoretical support for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Jun-Ke Wang
- Department of Gastroenterology, Peking Union Medical College and Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
21
|
Kim SJ, Choi SI, Jang M, Jeong YA, Kang CH, Kim GH. Combination of Limosilactobacillus fermentum MG4231 and MG4244 attenuates lipid accumulation in high-fat diet-fed obese mice. Benef Microbes 2021; 12:479-491. [PMID: 34348593 DOI: 10.3920/bm2020.0205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the anti-obesity effect and the underlying mechanisms of action of human-derived Limosilactobacillus fermentum MG4231, MG4244, and their combination, in high-fat diet-induced obese mice. Administration of the Limosilactobacillus strains decreased body weight gain, liver and adipose tissue weight, and glucose tolerance. Serum levels of total cholesterol, low-density lipoprotein-cholesterol, and leptin were reduced, while adiponectin increased. The administration of Limosilactobacillus strains improved the histopathological features of liver tissue, such as hepatic atrophy and inflammatory penetration, and significantly reduced the content of triglyceride in the liver. Limosilactobacillus administration discovered a significant reduction in the size of the adipocytes in the epididymal tissue. Limosilactobacillus treatment significantly reduced the expression of important regulators in lipid metabolism, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid synthase (FAS), adipocyte-protein 2, and lipoprotein lipase in the epididymal tissue. Also, Limosilactobacillus lowered sterol regulatory element-binding protein 1-c and FAS in the liver tissue. Such changes in the expression of these regulators in both liver and epididymis tissue were caused by Limosilactobacillus upregulating phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. Therefore, we suggest that the use of the combination of L. fermentum MG4231 and MG4244, as probiotics could effectively inhibit adipogenesis and lipogenesis from preventing obesity.
Collapse
Affiliation(s)
- S J Kim
- Department of Health Functional Materials, Duksung Women's University, 144 gil, Dobong-gu, Seoul, 01369, Republic of Korea
| | - S-I Choi
- Department of Health Functional Materials, Duksung Women's University, 144 gil, Dobong-gu, Seoul, 01369, Republic of Korea
| | - M Jang
- Department of Food and Life Science, Inje University, Gimhae, Republic of Korea
| | - Y-A Jeong
- R&D Center, MEDIOGEN Co., Ltd., Seoul, Republic of Korea
| | - C-H Kang
- R&D Center, MEDIOGEN Co., Ltd., Seoul, Republic of Korea
| | - G-H Kim
- Department of Food and Nutrition, Duksung Women's University, 33, Samyang-ro 144-gil, Dobong-gu, Seoul, 01369, Republic of Korea
| |
Collapse
|
22
|
Choi YJ, Kim JE, Lee SJ, Gong JE, Son HJ, Hong JT, Hwang DY. Dysbiosis of Fecal Microbiota From Complement 3 Knockout Mice With Constipation Phenotypes Contributes to Development of Defecation Delay. Front Physiol 2021; 12:650789. [PMID: 34349661 PMCID: PMC8326834 DOI: 10.3389/fphys.2021.650789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Significant phenotypes for constipation were detected in complement 3 (C3) knockout (KO) mice, although no research has been conducted on an association with alteration of gut microbiota. To investigate the effects of dysbiosis on fecal microbiota from C3 KO mice with constipation, the composition of fecal microbiota was characterized in mid-colons of 16-week-old C3 KO mice, and their function for defecation delay development was examined after fecal microbiota transplantation (FMT) of C3 KO mice. Some significant alterations in constipation phenotypes, including stool parameters and histopathological structure, were detected in 16-week-old C3 KO mice compared to those of wild-type (WT) mice. Fecal microbiota of C3 KO mice exhibited decreases in Anaerocolumna, Caecibacterium, Christensenella, Kineothrix, and Oscillibacter populations and increases in Prevotellamassilia, Reuthenibacterium, Prevotella, Eubacterium, Culturomica, Bacteroides, and Muribaculum populations. In FMT study, key stool parameters, including weight and water content, were remarkably declined in a transplanted KO (KFMT) group of antibiotics-induced depletion of microbiota (AiDM)-WT and AiDM-KO mice, and a similar change was observed in fecal morphology. However, intestine length decreased in only the KFMT group of AiDM-WT mice compared with that of AiDM-KO mice. The mucosal layer and muscle thickness were commonly decreased in the KFMT group of AiDM-WT and AiDM-KO mice, and significant alterations in the crypt structure of Lieberkuhn and molecular regulators, including AQP8, C-kit, and 5-HT, were observed in the same group. Taken together, results of the present study indicate that dysbiosis of fecal microbiota from C3 KO mice with constipation phenotypes has a key role in the induction and regulation of defecation delay.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Hong Joo Son
- Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea.,Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| |
Collapse
|
23
|
Zhou X, Ding S, Hu R. The Related Study on the Pathogenesis of Gastrointestinal Diseases in Gastrointestinal Flora and the Risk of Gastric Ulcer Carcinogenesis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gastrointestinal diseases are common diseases of many kinds. The pathogenesis of gastrointestinal disease has not been fully understood. In this study with gastric mucosa specimen, among the three groups of chronic gastritis, gastric ulcer, and duodenal ulcer, there were differences
of Helicobacter pylori (H. pylori), Lactobacillus, Prevotella, Clostridium, B. fragilis, and Enterobacteriaceae. There was no significant difference in Lactobacillus among chronic gastritis, gastric ulcers, and duodenal ulcers with fecal specimens, but there was a significant
difference between these three groups and the gastric cancer group. Correlation analysis showed that six kinds of flora had a negative correlation with H. pylori, procalcitonin (PCT), tumor necrosis factor α (TNF-α), cluster of differentiation 4 (CD4+),
cluster of differentiation 8 (CD8+), immunoglobulin G (IgG), and immunoglobulin M (IgM) were different in different gastrointestinal diseases, and PCT, TNF-α and CD8+ were positively correlated with H. pylori and negatively correlated with CD4+,
IgM and IgG. Logistic regression analysis showed that age, recurrent gastric ulcer times, atrophic gastritis, and H. pylori were independent risk factors of gastric ulcer canceration. Therefore, we believe that gastrointestinal flora, especially H. pylori, plays a vital role
in the pathogenesis of gastrointestinal diseases, and H. pylori is an essential risk factor for gastric ulcer carcinogenesis.
Collapse
Affiliation(s)
- Xiaomin Zhou
- Department of Gastroenterology & Hepatology, Shanghai Jinshan District Tinglin Hospital, Shanghai 201505, PR China
| | - Songze Ding
- Department of Gastroenterology & Hepatology, Henan Provincial People’s Hospital, People’s Hospital ofZhengzhou University, Zhengzhou 450003, Henan, PR China
| | - Ruobing Hu
- Department of Gastroenterology & Hepatology, Henan Provincial People’s Hospital, People’s Hospital ofZhengzhou University, Zhengzhou 450003, Henan, PR China
| |
Collapse
|
24
|
Mitelmão FCR, Bergamaschi CDC, Gerenutti M, Hächel K, Silva MT, Balcão VM, Vila MMDC. The effect of probiotics on functional constipation in adults: Double-blind, randomized, placebo-controlled study. Medicine (Baltimore) 2021; 100:e24938. [PMID: 33725854 PMCID: PMC7969262 DOI: 10.1097/md.0000000000024938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND : Evacuation disorders are common in industrialized countries, affecting an average of 15% to 20% of the healthy adult population. Probiotic therapy can reduce functional constipation and increase both the number of weekly bowel movements and quality of stools. Based on the hypothesis that a combination of more strains may provide better results for constipation and facilitate adherence to treatment, this study will evaluate the efficacy and safety of a combination of different strains of Lactobacillus sp. and Bifidobacterium sp. in functional constipation. METHODS : A single-centre trial of adults aged 20 to 80 years with intestinal constipation will be conducted at a Gastroenterology Clinic in Sorocaba, State of São Paulo, Brazil. Participants will be allocated into 3 groups receiving: 1. mixture of 3 probiotics: [Lactobacillus acidophilus, Bifidobacterium bifidum, and Lactobacillus rhamnosus (3 × 109 CFU)]; 2. mixture of 8 probiotics [Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus rhamnosus, Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium lactis, Lactobacillus defensis, Bifidobacterium animallis (8 × 109 CFU)]; or 3. placebo, for 4 weeks. The outcomes of interest will be change in frequency of weekly bowel movements, change in stool quality according to the 4–6 Bristol scale, number of volunteer withdrawal, number of adverse events and number of serious adverse effect. DISCUSSION: The probiotic products are expected to induce beneficial changes in the intestinal microbiota, thereby increasing intestinal frequency to over 3 times a week and improving stool quality. The results can guide patients and healthcare practitioners and help in decision-making in the treatment of functional constipation. TRIAL REGISTRATION AND REGISTRY NAME: ClinicalTrials.gov Identifier: NCT04437147: The Effect of Probiotics on Functional Constipation in Adults: Study protocol for Double blind, Randomized, Placebo controlled Study PROTOCOL VERSION: Version 01 August 30, 2020.
Collapse
Affiliation(s)
| | | | | | - Karin Hächel
- Clinic of Gastroenterology Dr. Karin Häckel, Sorocaba, Brazil
| | | | - Victor M. Balcão
- University of Sorocaba, PhageLab - Laboratory of Biofilms and Bacteriophages
- Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro, Portugal
| | | |
Collapse
|
25
|
Li Y, Tong WD, Qian Y. Effect of Physical Activity on the Association Between Dietary Fiber and Constipation: Evidence From the National Health and Nutrition Examination Survey 2005-2010. J Neurogastroenterol Motil 2021; 27:97-107. [PMID: 33380555 PMCID: PMC7786093 DOI: 10.5056/jnm20051] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS The effect of physical activity on the relationship between dietary fiber intake and constipation has not been comprehensively studied. This study aims to explore the impact of physical activity. METHODS Data were obtained from 3 cycles of the National Health and Nutrition Examination Survey (NHANES) 2005-2010 and included a total of 13 941 participants aged ≥ 20 years. Multiple logistic regression analysis was used to investigate the independent association between dietary fiber and constipation. Interaction analysis was also performed to analyze the relationship between dietary fiber and constipation in different physical activity groups. RESULTS Among non-active participants, dietary fiber intake did not associate with stool consistency (OR, 1.02; 95% CI, 0.98-1.05; P = 0.407). For physically active participants, 1-gram unit increase in dietary fiber intake reduced the risk of stool consistency by 3% (OR, 0.97; 95% CI, 0.94-0.99; P = 0.020). Moreover, the relationship between dietary fiber intake and stool consistency was significantly different for groups with different levels of physical activity (P interaction = 0.044). However, dietary fiber intake was not related to stool frequency among non-active participants (OR, 0.99; 95% CI, 0.94-1.05; P = 0.767) nor physically active participants (OR, 1.01; 95% CI, 0.97-1.04; P = 0.751). CONCLUSIONS Increasing dietary fiber intake was associated with stool consistency-related constipation among physically active participants, but not among non-active participants. However, increasing dietary fiber intake is not significantly associated with stool frequency in different physical activity groups.
Collapse
Affiliation(s)
- Yi Li
- Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Wei-Dong Tong
- Gastric and Colorectal Division, Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Qian
- Operating Room, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Contreras AAG, Garibay EMV, Ramírez CAS, Fafutis Morris M, Delgado Rizo V. Lactobacillus reuteri DSM 17938 and Agave Inulin in Children with Cerebral Palsy and Chronic Constipation: A Double-Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020; 12:nu12102971. [PMID: 32998471 PMCID: PMC7601218 DOI: 10.3390/nu12102971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
The main objective was to assess the efficacy of a probiotic (Lactobacillus reuteri DSM 17938), a prebiotic (agave inulin), and a synbiotic on the stool characteristics in children with cerebral palsy and chronic constipation. Thirty-seven children with cerebral palsy and chronic constipation were included. The probiotic group received 1 × 108 colony forming unit (cfu) of L. reuteri DSM 17938 plus placebo, the prebiotic group received 4 g of agave inulin plus placebo, the synbiotic group received L. reuteri DSM 17938 plus agave inulin, and the placebo group received two placebos for 28 days. The probiotic group showed a significant decrease in stool pH (p = 0.014). Stool consistency improved in the prebiotic group (p = 0.008). The probiotic, prebiotic, and synbiotic groups showed a significant improvement in the history of excessive stool retention, the presence of fecal mass in the rectum, and the history of painful defecation. L. reuteri concentration in feces was higher in the probiotic group than in the placebo group (p = 0.001) and showed an inverse correlation with stool pH in the probiotic group (r = −0.762, p = 0.028). This study showed that the use of L. reuteri DSM 17938 and/or agave inulin improved the stool characteristics such as the history of painful defecation and the presence of fecal mass in the rectum against placebo in children with cerebral palsy and chronic constipation.
Collapse
Affiliation(s)
- Andrea A. García Contreras
- Departamento de Nutrición y Bienestar Integral, Escuela de Medicina, Instituto Tecnológico y de Estudios Superiores Monterrey Campus Guadalajara, C.P. 4520 Zapopan, Jalisco, Mexico;
| | - Edgar M. Vásquez Garibay
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P. 44340 Guadalajara, Jalisco, Mexico; (M.F.M.); (V.D.R.)
- Correspondence: ; Tel.: +52-33-36189667
| | - Carmen A. Sánchez Ramírez
- Departamento de la Facultad de Medicina, Facultad de Medicina, Universidad de Colima, C.P. 28040 Colima, Colima, Mexico;
| | - Mary Fafutis Morris
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P. 44340 Guadalajara, Jalisco, Mexico; (M.F.M.); (V.D.R.)
| | - Vidal Delgado Rizo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P. 44340 Guadalajara, Jalisco, Mexico; (M.F.M.); (V.D.R.)
| |
Collapse
|
27
|
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, Schutz F, Docea AO, Martins N, Calina D. Probiotics: Versatile Bioactive Components in Promoting Human Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E433. [PMID: 32867260 PMCID: PMC7560221 DOI: 10.3390/medicina56090433] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Célia F. Rodrigues
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Selvaraj Milton Prabu
- Department of Zoology, Annamalai University, Annamalai Nagar 608002, Chidambaram, India;
| | - Francine Schutz
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Natália Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
28
|
Li XQ, Zhang XM, Wu X, Lan Y, Xu L, Meng XC, Li JN. Beneficial effects of lactitol on the composition of gut microbiota in constipated patients. J Dig Dis 2020; 21:445-453. [PMID: 32483935 DOI: 10.1111/1751-2980.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the changes in microbial composition and the corresponding impact after lactitol treatment in constipated patients. METHODS Altogether 29 consecutive outpatients diagnosed with chronic constipation from three centers were recruited and stratified based on their history of diabetes mellitus. All patients were administered with oral lactitol for 2 weeks, and a symptoms diary of constipation was recorded. Fecal samples were collected before and after lactitol treatment, and were analyzed by 16S rRNA sequencing and real-time polymerase chain reaction (PCR) to detect gut microbiota. RESULTS Twenty patients with diabetes mellitus and nine without, all with chronic constipation, were enrolled in this study. After 2-week administration of lactitol, their subscale scores and constipation symptoms significantly decreased (P < 0.05). An analysis of fecal flora using 16S rRNA sequencing found an increasing trend of abundance of Bifidobacterium in the post-lactitol group (P = 0.08). Actinobacteria, Actinobacteria, Bifidobacteriales, Bifidobacteriaceae and Bifidobacterium were significantly more abundant after lactitol administration. Real-time PCR showed significantly high DNA copy numbers of Bifidobacterium after lactitol treatment (1.39 × 1010 vs 2.74 × 109 copies/μL, P = 0.01). The results of 16S rRNA sequencing and real-time PCR illustrated an increasing trend of Bifidobacterium in both patients with and without diabetes. In addition, Bifidobacterium was negatively correlated with constipation subscale scores. CONCLUSIONS Alterations in fecal flora composition after lactitol supplementation, especially in terms of an increasing trend of Bifidobacterium, alleviated constipation symptoms. Lactitol may be a promising prebiotic candidate for patients with constipation, regardless of diabetes mellitus.
Collapse
Affiliation(s)
- Xiao Qing Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Min Zhang
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing, China
| | - Xi Wu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yu Lan
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing, China
| | - Le Xu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiang Chen Meng
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Liu Y, Liu B, Li D, Hu Y, Zhao L, Zhang M, Ge S, Pang J, Li Y, Wang R, Wang P, Huang Y, Huang J, Bai J, Ren F, Li Y. Improved Gastric Acid Resistance and Adhesive Colonization of Probiotics by Mucoadhesive and Intestinal Targeted Konjac Glucomannan Microspheres. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.202001157] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 08/22/2024]
Abstract
AbstractThe low survival rate in harsh stomach conditions and short retention in intestine of probiotics greatly limit their health benefits. To solve this problem, thiolated oxidized konjac glucomannan (sOKGM) microspheres is designed with pH responsive and mucoadhesive properties. First, an increased survival rate of probiotics by sOKGM microspheres encapsulation in simulated gastric fluid (SGF) is discovered in contrast to the zero‐survival rate of naked probiotics. sOKGM/probiotics even show a higher survival rate in SGF compared with commercial Bb12 formulation. Further, an enhanced mucoadhesion of probiotics to intestinal mucus by mediated interactions with sOKGM is confirmed by isotherm titration calorimetry, rheology, and tensile measurements. The in vivo intestinal transition experiment indicates a prolonged retention of probiotics at intestine by sOKGM encapsulation. Moreover, in vivo evaluation of enhanced colonization and proliferation by sOKGM/probiotics is demonstrated by the fecal and intestinal bacteria copy number via quantitative polymerase chain reaction (qPCR) detection. Further investigation of the alleviation of constipation by sOKGM containing Bifidobacterium animalis subsp. lactis A6 suggests that sOKGM increases the abundance of Bifidobacterium, balanced intestinal flora, and alleviated constipation in mice compared with other formulations. sOKGM with both enhanced gastric acid resistance and adhesion colonization at intestine can effectively improve the function of probiotics.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Dan Li
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Yulin Hu
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Liang Zhao
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Ming Zhang
- School of Food and Health Beijing Technology and Business University Beijing 100048 P. R. China
| | - Shaoyang Ge
- The Research Center for Probiotics China Agricultural University Hebei 065201 P. R. China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 P. R. China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
- The Research Center for Probiotics China Agricultural University Hebei 065201 P. R. China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Yutao Huang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Jing Huang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Jie Bai
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| |
Collapse
|
30
|
Xu YJ, Zhang YF, Xu CP. Effect of changes of gut microbiota in constipation on lipid metabolism. Shijie Huaren Xiaohua Zazhi 2020; 28:341-346. [DOI: 10.11569/wcjd.v28.i9.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yu-Jie Xu
- First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ya-Feng Zhang
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Cui-Ping Xu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
31
|
Vriesman MH, Koppen IJN, Camilleri M, Di Lorenzo C, Benninga MA. Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol 2020; 17:21-39. [PMID: 31690829 DOI: 10.1038/s41575-019-0222-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Functional constipation is common in children and adults worldwide. Functional constipation shows similarities in children and adults, but important differences also exist regarding epidemiology, symptomatology, pathophysiology, diagnostic workup and therapeutic management. In children, the approach focuses on the behavioural nature of the disorder and the initial therapeutic steps involve toilet training and laxatives. In adults, management focuses on excluding an underlying cause and differentiating between different subtypes of functional constipation - normal transit, slow transit or an evacuation disorder - which has important therapeutic consequences. Treatment of adult functional constipation involves lifestyle interventions, pelvic floor interventions (in the presence of a rectal evacuation disorder) and pharmacological therapy. When conventional treatments fail, children and adults are considered to have intractable functional constipation, a troublesome and distressing condition. Intractable constipation is managed with a stepwise approach and in rare cases requires surgical interventions such as antegrade continence enemas in children or colectomy procedures for adults. New drugs, including prokinetic and prosecretory agents, and surgical strategies, such as sacral nerve stimulation, have the potential to improve the management of children and adults with intractable functional constipation.
Collapse
Affiliation(s)
- Mana H Vriesman
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Ilan J N Koppen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Camilleri
- C.E.N.T.E.R. Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Carlo Di Lorenzo
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Liu Y, Gao X, Ding Y, Zhou Y, Liu X, Wang H, Wang Q, Ma B, Yao S. Effectiveness and safety of light vegetarian diet on functional constipation with gastrointestinal damp-heat pattern: An exploratory study protocol for randomized controlled trial. Medicine (Baltimore) 2019; 98:e18325. [PMID: 31852124 PMCID: PMC6922355 DOI: 10.1097/md.0000000000018325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Functional constipation (FC) is one of the common gastrointestinal disorders that affects people of almost every age. Persistent FC significantly affects quality of life and well-being along with economic burden on patients as well as health care system. Therapeutic efficacy of currently used treatment strategies becomes limited shortly after their discontinuation as constipation occurs again as a result of inappropriate dietary habits. Previous studies have revealed that light vegetarian diet (LVD) can significantly improve both typical and atypical subtypes of major traditional Chinese medicine (TCM) FC syndrome such as gastrointestinal damp-heat syndrome. This protocol aims at exploratorily investigating effectiveness and safety of LVD following a rigorous clinical trial. METHODS AND DESIGN Total 92 patients in each of the 2 subtypes will be recruited in China-Japan Friendship Hospital for participating in this prospective, placebo-controlled, randomized trial and exploratory study. The patients in each subtype will be randomly divided into 4 groups according to 1:1:1:1 ratio with allocation concealment, which are drug + diet group, drug group, placebo + diet group and placebo group. Patients in the group with diet intervention will be required to strictly follow the LVD. The study will continue for a period of 28 days, including a drug or placebo supervised intervention and a 14th-day telephone follow-up. During the intervention, patients will be required to record a designed diary for controlling the diet quality (DQ) and analyzing the defecation. The study will focus investigation of complete spontaneous bowel movements (CSBM) per week as its primary outcome and constipation-related symptom rating scale (CSS), TCM syndrome scale (TCMSS), 48-hour gastrointestinal transit time (48-hour GITT), high resolution anorectal manometry (HRAM) and fecal flora detection (FFD) will be included in secondary outcomes. Furthermore, the study will also determine safety, DQ and compliance indicators. ETHICS AND DISSEMINATION This study has been approved by China-Japan Friendship Hospital clinical research ethics committee (No. 2017-46-1). A SPIRIT checklist is available for this protocol. TRIAL REGISTRATION NUMBER ChiCTR1800019686 in Chinese Clinical Trial Registry (WHO ICTRP member).
Collapse
Affiliation(s)
- Yu Liu
- School of Graduates, Beijing University of Chinese Medicine
- Department of Gastroenterology of Traditional Chinese Medicine, China-Japan Friendship Hospital
| | - Xudong Gao
- Department of Endoscopy Center, Beijing Rectum Hospital
| | - Yuehua Ding
- Peking University China-Japan Friendship School of Clinical Medicine, Peking University
| | - Yuanchen Zhou
- Peking University China-Japan Friendship School of Clinical Medicine, Peking University
| | - Xinyuan Liu
- School of Graduates, Beijing University of Chinese Medicine
| | - Huijing Wang
- School of Graduates, Beijing University of Chinese Medicine
| | - Qianqian Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Peking University
| | - Bingzhi Ma
- Department of Pharmacy, China-Japan Friendship Hospital
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
33
|
Morshedi M, Hashemi R, Moazzen S, Sahebkar A, Hosseinifard ES. Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review. J Neuroinflammation 2019; 16:231. [PMID: 31752913 PMCID: PMC6868771 DOI: 10.1186/s12974-019-1611-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and autoimmune neurological disorder which leads to demyelination. Although the etiology of MS is yet to be known, it appears that regulating the immune system and suppressing inflammatory pathways may possibly have a favorable effect on the healing of this disease. Evidence suggests that probiotics consumption via gut microbiome alteration devises beneficial effects in improving immune and inflammatory responses in MS. All articles were systematically searched (in the main databases) for this paper. Two investigators independently scrutinized full texts of the potentially eligible articles. The quality of the study was evaluated using standardized tools. The methodological quality of seven studies included in this review ranged from fair to good. The findings illustrated that there were statistically significant improvements in the static and dynamic balance in patients and animals with MS. In the paper in hand, the effects of probiotics administration on immune and inflammatory markers in MS disease are evaluated. In addition, the limitations and knowledge gaps were reported while proposing a possible mechanism of probiotics therapy in modulating immune and inflammatory responses. This systematic review indicated that the probiotics could improve immune and inflammatory parameters, the cytokines and cells in MS disease. Probiotics may have efficient effects in management and treatment of MS. More studies are required to clarify the effect of supplementation with probiotics and their mechanisms in MS disease.
Collapse
Affiliation(s)
- Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Moazzen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, 9713, GZ, the Netherlands
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
34
|
Lu Y, Zhang J, Yi H, Zhang Z, Zhang L. Screening of intestinal peristalsis-promoting probiotics based on a zebrafish model. Food Funct 2019; 10:2075-2082. [PMID: 30911742 DOI: 10.1039/c8fo02523a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Based on the difference of the intestinal tract fluorescence intensity of zebrafish, the precise screening of strains with high retention capacity in vivo was completed and probiotics for intestinal peristalsis were quickly screened from strains with high retention capacity using the transparent visibility of zebrafish. In order to study the relationship between probiotic retention and intestinal peristalsis and develop constipation-resistant probiotics, this study used 2 types of strain and 6 potential functional strains and screened them based on the fluorescence intensity and intestinal peristalsis-promoting in the zebrafish model. The methods and results were as follows: (1) the zebrafish were immersed in the strains labeled with fluorescein isothiocyanate (FITC), and the intestinal fluorescence intensity was taken as the index. The strain L. paracasei X11 with good retention capacity was screened out. (2) 220 zebrafish were randomly selected and divided into 11 groups with 20 tails in each group. 1 group was the normal control group and the other 10 groups were used to construct the constipation zebrafish model by the loperamide hydrochloride method, namely, 1 model control group, 1 model + positive drug control group (domperidone), 2 model + type strains control groups, and 6 model + potential strain treatment groups. The intestinal peristalsis frequency of each group within 1 min was calculated after immersing the model zebrafish in 108 CFU mL-1 strain solution. The results showed that L. paracasei X11 had a better function of intestinal peristalsis-promotion.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| | | | | | | | | |
Collapse
|
35
|
Wang L, Chen C, Cui S, Lee YK, Wang G, Zhao J, Zhang H, Chen W. Adhesive Bifidobacterium Induced Changes in Cecal Microbiome Alleviated Constipation in Mice. Front Microbiol 2019; 10:1721. [PMID: 31456752 PMCID: PMC6700325 DOI: 10.3389/fmicb.2019.01721] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Constipation, which seriously affects living quality of people, is a common gastrointestinal disease. The engagement of the intestinal flora in the development of symptoms of constipation has been frequently hypothesized. In this study, constipated mice induced by loperamide were used to investige the alleviation of constipation by Bifidobacteria. Bifidobacteria was sorted out according to their adhesive properties into two groups. One group combined multiple strains of Bifidobacterium with adhesion property (CMB1), the other combined multiple strains of Bifidobacterium without adhesion property (CMB2). It was found that CMB1 can alleviate constipation more efficiently by improving the water, propionate and butyrate content in feces, and overall gastrointestinal transit time. Meanwhile, from the perspective of fecal microbiota, CMB1 alleviated constipation mainly by increasing the relative abundances of genera (Bifidobacterium, Lactobacillus, and Prevotella) associated with rapid bowel movement. From the perspective of cecal microbiota, CMB1 alleviated constipation mainly by increasing the relative abundances of genera Lactobacillus, Bacteroides, unclassified S24-7, Dorea, Ruminococcus, Coprococcus, and Rikenella, and decreasing the relative abundances of genera Oscillospira, Odoribacter and Unclassified F16, which are associated with methane production and colonic transit. Overall, changes of microbiota in caecum by CMB1 reflect the stage of constipation in mice more comprehensively than that in feces.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
36
|
Kamiński M, Skonieczna-Żydecka K, Łoniewski I, Koulaouzidis A, Marlicz W. Are probiotics useful in the treatment of chronic idiopathic constipation in adults? A review of existing systematic reviews, meta-analyses, and recommendations. PRZEGLAD GASTROENTEROLOGICZNY 2019; 15:103-118. [PMID: 32550942 PMCID: PMC7294971 DOI: 10.5114/pg.2019.86747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Chronic idiopathic constipation (CIC) has emerged as common problem for contemporary gastroenterology and is one of the most frequent complaints in primary care. Chronic idiopathic constipation significantly affects patients' quality of life and has an impact on global health and economy. Functional gastrointestinal disorders and bowel disorders, according to Rome IV criteria, result from inappropriate gut-brain interactions. The pathophysiology is complex and poorly understood, with evidence accumulating that gut microbiota can be implicated in the development and function of the enteric nervous system. Gut bacteria modulate gut barrier function, short chain fatty acid synthesis, and bile acid metabolism, factors which play roles in the gut peristalsis regulation. The high prevalence of CIC, with poor treatment outcomes, warrants searches for new forms of therapy, including probiotic therapies. Probiotics are often recommended by medical practitioners, but evidence-based utility in adults with CIC is uncertain. Recommendations/guidelines are often based on results from individual studies, rather than meta-analyses or umbrella reviews. Additionally, meta-analyses often indicate a group of probiotics rather than individual strains, and they create difficulty for physicians in making therapeutic choices. More CIC patient randomised clinical studies utilising well-defined strains, or combinations, are necessary.
Collapse
Affiliation(s)
| | | | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
37
|
Lactate Metabolism Is Strongly Modulated by Fecal Inoculum, pH, and Retention Time in PolyFermS Continuous Colonic Fermentation Models Mimicking Young Infant Proximal Colon. mSystems 2019; 4:4/4/e00264-18. [PMID: 31138674 PMCID: PMC6538849 DOI: 10.1128/msystems.00264-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolism of lactate impacts infant gut health and may lead to acute accumulation of lactate and/or H2 associated with pain and crying of colicky infants. Because gut microbiota studies are limited due to ethical and safety concerns, in vitro fermentation models were developed as powerful tools to assess effects of environmental conditions on the gut microbiota. In this study, we established a continuous colonic fermentation model (PolyFermS), inoculated with immobilized fecal microbiota and mimicking the proximal colon of 2-month-old infants. We investigated the effects of pH and retention time (RT) on lactate metabolism and of lactate-utilizing bacteria (LUB) exhibiting little or no H2 production. We observed that a drop in pH from 6.0 to 5.0 increased the number of lactate-producing bacteria (LPB) and decreased LUB concomitantly with lactate accumulation. Increasing RT from 5 to 10 h at pH 5.0 resulted in complete lactate consumption associated with increased LUB. Supplementation with dl-lactate (60 mM) to mimic lactate accumulation promoted propionate and butyrate production with no effect on acetate production. We further demonstrated that lactate-utilizing Propionibacterium avidum was able to colonize the reactors 4 days after spiking, suggesting its ability to compete with other lactate-utilizing bacteria producing H2 In conclusion, we showed that PolyFermS is a suitable model for mimicking young infant colonic microbiota. We report for the first time pH and RT as strong drivers for composition and metabolic activity of infant gut microbiota, especially for the metabolism of lactate, which is a key intermediate product for ecology and infant health.IMPORTANCE The metabolism of lactate is important for infant gut health and may lead to acute lactate and/or H2 accumulation, pain, and crying as observed in colicky infants. Functional human studies often faced ethical challenges due to invasive medical procedures; thus, in this study, we implemented PolyFermS fermentation models to mimic the infant proximal colon, which were inoculated with immobilized fecal microbiota of two 2-month-old infants. We investigated the impact of pH, retention time, and accumulation of dl-lactate on microbiota composition and metabolic activity. We found that a drop in pH from 6.0 to 5.0 led to increased LPB and decreased LUB concomitantly with lactate accumulation. Increasing the RT resulted in complete lactate consumption associated with increased LUB. Our data highlight for the first time the impact of key abiotic factors on the metabolism of lactate, which is an important intermediate product for ecology and infant health.
Collapse
|
38
|
Strompfová V, Kubašová I, Ščerbová J, Maďari A, Gancarčíková S, Mudroňová D, Miltko R, Belzecki G, Lauková A. Oral administration of bacteriocin-producing and non-producing strains of Enterococcus faecium in dogs. Appl Microbiol Biotechnol 2019; 103:4953-4965. [PMID: 31025077 DOI: 10.1007/s00253-019-09847-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The current effort to incorporate microbial cultures in canine nutrition and thus intake of them on daily base increases our interest in careful and more complex study of their effects in dogs. Many of the commercially used strains have not been tested in dogs and are incorporated only on the base of beneficial effects observed in humans with specific disorders. Moreover, no information on the effects of bacteriocin-producing strains in dogs is available. Therefore, we decided to test and to compare overall effect of bacteriocin non-producing Enterococcus faecium DSM 32820 and enterocin B-producing E. faecium LMG 30881 strain (both of canine origin). Dogs were divided into three treatment groups of ten dogs each: control; DSM 32820 group; and LMG 30881 group, dosing 109 CFU/day/dog. The experiment lasted 35 days with a 14-day treatment period (sample collection at days 0, 7, 14, 35). Despite bacteriocin production is believed that may provide a competitive advantage over neighbouring sensitive strains within shared environment, results indicated somewhat better survival for the DSM 32820 compared to the LMG 30881 group. Furthermore, dogs of DSM 32820 group had optimal faecal consistency throughout the experiment, significantly stimulated phagocytic activity (days 7 and 14) and metabolic burst activity of leukocytes (days 14 and 35) and lower serum glucose concentration (day 35). In contrast, dogs of LMG 30881 group showed higher faecal count of Gram-negative bacteria (day 35), lower haemoglobin and glucose concentration (day 35), and higher metabolic burst activity (days 14 and 35). These results are further evidence of the existence of inter-strain differences in efficacy despite the same origin.
Collapse
Affiliation(s)
- Viola Strompfová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01, Košice, Slovakia.
| | - Ivana Kubašová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - Jana Ščerbová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - Aladár Maďari
- University of Veterinary Medicine and Pharmacy, Small Animal Clinic, Komenského 73, 041 81, Košice, Slovakia
| | - Soňa Gancarčíková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovakia
| | - Renata Miltko
- Polish Academy of Sciences, Kielanowski Institute of Animal Physiology and Nutrition, Instytucka 3, 05-110, Jablonna, Poland
| | - Grzegorz Belzecki
- Polish Academy of Sciences, Kielanowski Institute of Animal Physiology and Nutrition, Instytucka 3, 05-110, Jablonna, Poland
| | - Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01, Košice, Slovakia
| |
Collapse
|
39
|
Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, Hong JT, Choi DY. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem 2019; 69:73-86. [PMID: 31063918 DOI: 10.1016/j.jnutbio.2019.03.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Microbiota in the gut affect brain physiology via various pathways, and dysbiosis seems to play a role in the pathogenesis of Parkinson's disease (PD). Probiotics showed pleiotropic effects on functions of the central nervous system via microbiota-gut-brain axis. However, no studies displayed the neuroprotective effects of probiotics in the Parkinson's disease. This study aimed to test the neuroprotective effects of probiotics in two different models of PD. We evaluated neuroprotective effects of a probiotic cocktail containing Lactobacillus rhamnosus GG, Bifidobacterium animalis lactis, and Lactobacillus acidophilus in PD models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone utilizing behavioral tests, immunohistochemistry and neurochemical analysis. To assure the neuroprotection came from increased production of butyrate, we further determined beneficial effects of butyrate in the MPTP-mediated PD model. The probiotic mixture overtly protected the dopaminergic neurons against MPTP neurotoxicity. However, the probiotics downregulated expression of monoamine oxidase (MAO) B in the striatum, which was accompanied by a lower level of 1-methyl-4-phenylpyridinium (MPP+), the main neurotoxic metabolite of MPTP. Thus, we extended the investigation into the rotenone-induced PD model. Rescuing effects of the probiotics were observed in the setup, which came with increased levels of neurotrophic factors and butyrate in the brain. Lactobacillus rhamnosus GG was identified to be a major contributor to the induction of neurotrophic factors and downregulation of MAO B. Finally, we demonstrated that sodium butyrate attenuated MPTP-induced neuronal loss in the nigrostriatal pathway. Probiotics could ameliorate neurodegeneration at least partially by increasing butyrate level. These data highlight the role of probiotics for brain health, and their potential as a preventive measure for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Sunil Srivastav
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sabita Neupane
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sailesh Maharjan
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21 Osongsaengmyeong1-ro, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
40
|
Madempudi RS, Neelamraju J, Ahire JJ, Gupta SK, Shukla VK. Bacillus coagulans Unique IS2 in Constipation: A Double-Blind, Placebo-Controlled Study. Probiotics Antimicrob Proteins 2019; 12:335-342. [DOI: 10.1007/s12602-019-09542-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Cao W, Wang C, Chin Y, Chen X, Gao Y, Yuan S, Xue C, Wang Y, Tang Q. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct 2019; 10:277-288. [DOI: 10.1039/c8fo01404c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DHA-PL and EPA-PL may effectively protect mice against intestinal dysfunction under chronic stress exposure.
Collapse
Affiliation(s)
- Wanxiu Cao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Chengcheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yaoxian Chin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Xin Chen
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuan Gao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Shihan Yuan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qingjuan Tang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
42
|
Zhao X, Qian Y, Li G, Yi R, Park KY, Song JL. Lactobacillus plantarum YS2 (yak yogurt Lactobacillus) exhibited an activity to attenuate activated carbon-induced constipation in male Kunming mice. J Dairy Sci 2019; 102:26-36. [DOI: 10.3168/jds.2018-15206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/29/2018] [Indexed: 01/30/2023]
|
43
|
Riezzo G, Orlando A, D'Attoma B, Linsalata M, Martulli M, Russo F. Randomised double blind placebo controlled trial on Lactobacillus reuteri DSM 17938: improvement in symptoms and bowel habit in functional constipation. Benef Microbes 2018; 9:51-60. [PMID: 29022390 DOI: 10.3920/bm2017.0049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Dysbiosis may contribute to constipation and its symptoms, therefore probiotic administration could improve significantly gut health and functions. The aim of the study was to investigate the effects of a long-lasting administration of Lactobacillus reuteri DSM 17938 (LR DSM 17938) on symptoms and quality of life (QoL) score in patients with functional constipation (FC). 56 FC patients with normal colonic transit time and without anorectal disorders and pelvic floor dysfunctions completed the study. LR DSM 17938 was administered for 105 days in a randomised double-blind clinical trial (28 patients per arm). Individual and cumulative scores including the Constipaq, a modified Constipation Scoring System (CSS) that considers the patient assessment of constipation-QoL (PAC-QoL), were calculated during the preliminary visit (V0), at day 15 (end of the induction period with a LR DSM 17938 double dosage, 4×108 cfu), day 60 (intermediate evaluation) and day 105 (V4) after a standard dosage (2×108 cfu). At the end of treatment, the beneficial effect of LR DSM 17938 compared to placebo was significantly evident for symptoms related to gas content and dysbiosis (abdominal discomfort, pain and bloating), incomplete defecation and helps for defecation (P<0.05). At the end of the whole LR DSM 17938 treatment, a marked and positive effect on both the CSS single and the cumulative items was evident with the exception of unfruitful attempt and Bristol score. Present findings indicate that LR DSM 17938 has an effect on symptoms different from stool consistency, and they suggest that this probiotic can effectively be used in association therapy rather than as single-drug therapy in the management of FC.
Collapse
Affiliation(s)
- G Riezzo
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - A Orlando
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - B D'Attoma
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - M Linsalata
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - M Martulli
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - F Russo
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| |
Collapse
|
44
|
Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
45
|
Zoumpopoulou G, Tsakalidou E, Thomas L. An Overview of Probiotic Research. PROBIOTIC DAIRY PRODUCTS 2017:293-357. [DOI: 10.1002/9781119214137.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim HS, Seo KH. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct 2017; 8:680-686. [PMID: 28121325 DOI: 10.1039/c6fo01559j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactobacillus kefiranofaciens is the key probiotic bacterium in kefir. In this study, we investigated the effects of oral consumption of L. kefiranofaciens on the fecal quality and intestinal microbiota of mice. Four-week-old Balb/c mice were divided into two groups (n = 8 each) and administered 0.2 mL of saline (control group) or saline containing 2 × 108 cfu L. kefiranofaciens DN1 (LKF_DN1 group) for two weeks. At the end of the experiment, their fecal samples were collected and the fecal quality and microbiota were assessed. The LKF_DN1 group exhibited higher total fecal weight and fecal weight per stool sample than the control group (p < 0.05). Interestingly, the fecal water content was significantly higher in the fecal samples of the LKF_DN1 group than in those of the control group (p < 0.05). The numbers of total bacteria, Firmicutes, Bacteroidetes, Lactobacillus, and Prevotella were significantly higher in the LKF_DN1 group than in the control group (p < 0.05). In contrast, the number of opportunistic pathogens, including Proteobacteria and Enterobacteriaceae, and the percentage of genus Clostridium among the total bacteria were significantly reduced in the LKF_DN1 group (p < 0.05). Our data suggest that regular L. kefiranofaciens DN1 administration could alleviate constipation and improve gut microbiota.
Collapse
Affiliation(s)
- Dana Jeong
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Il-Byeong Kang
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Kwang-Young Song
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Hong-Seok Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
47
|
Ge X, Zhao W, Ding C, Tian H, Xu L, Wang H, Ni L, Jiang J, Gong J, Zhu W, Zhu M, Li N. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep 2017; 7:441. [PMID: 28348415 PMCID: PMC5428802 DOI: 10.1038/s41598-017-00612-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is involved in various physiological functions, and disturbances in the host-microbiome have been proven to contribute to the dysfunction of gut; however, whether microbiota participates in the pathogenesis of constipation remains unclear. In this study, we extracted and analyzed microbiota in feces from constipated donors who had undergone effective therapy with fecal microbiota transplantation, transplanted microbiota into pseudo-germ-free mice, and measured gut motility. These mice presented with lower pellet frequency and water percentage, smaller pellet size, delayed gastrointestinal transit time, and weaker spontaneous contractions of colonic smooth muscle. To determine the mechanism underlying delayed gut motility, microbial metabolites were measured. Short chain fatty acids and secondary bile acids were decreased in mice receiving microbiota from constipated donors. Moreover, the compositional changes of gut microbiota in constipated patients were identified, including the operational taxonomic unit, and the species richness and α diversity were much greater than those in healthy volunteers. These findings suggest that alterations of the microbiome might affect gut motility via altered microbial-derived metabolites in the development of constipation, and the restoration of disturbed microbiota might improve the clinical phenotype. This study indicates that regulating the intestinal environment may be a novel therapy strategy for constipation.
Collapse
Affiliation(s)
- Xiaolong Ge
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Wei Zhao
- Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Chao Ding
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongliang Tian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lizhi Xu
- Department of Medical Genetics, and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongkan Wang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Ling Ni
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jun Jiang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Minsheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210002, China
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
48
|
L-Glutamine Supplementation Alleviates Constipation during Late Gestation of Mini Sows by Modifying the Microbiota Composition in Feces. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4862861. [PMID: 28386552 PMCID: PMC5366184 DOI: 10.1155/2017/4862861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
Constipation occurs frequently in both sows and humans, particularly, during late gestation. The microbial community of the porcine gut, the enteric microbiota, plays a critical role in functions that sustain intestinal health. Hence, microbial regulation during pregnancy may be important to prevent host constipation. The present study was conducted to determine whether L-glutamine (Gln) supplementation improved intestinal function and alleviated constipation by regulation of enteric microbiota. 16S rRNA sequences obtained from fecal samples from 9 constipated sows (3 in the constipation group and 6 in the 1.0% Gln group) were assessed from gestational day 70 to 84. Comparative analysis showed that the abundance of intestinal-friendly microbiota, that is, Bacteroidetes (P = 0.007) and Actinobacteria (P = 0.037), was comparatively increased in the 1.0% Gln group, while the abundance of pernicious bacteria, Oscillospira (P < 0.001) and Treponema (P = 0.011), was decreased. Dietary supplementation with 1.0% Gln may ameliorate constipation of sows by regulated endogenous gut microbiota.
Collapse
|
49
|
Surendran Nair M, Amalaradjou MA, Venkitanarayanan K. Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2017; 98:1-29. [PMID: 28189153 DOI: 10.1016/bs.aambs.2016.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Probiotics are nonpathogenic microorganisms that confer a health benefit on the host when administered in adequate amounts. Ample evidence is documented to support the potential application of probiotics for the prevention and treatment of infections. Health benefits of probiotics include prevention of diarrhea, including antibiotic-associated diarrhea and traveler's diarrhea, atopic eczema, dental carries, colorectal cancers, and treatment of inflammatory bowel disease. The cumulative body of scientific evidence that demonstrates the beneficial effects of probiotics on health and disease prevention has made probiotics increasingly important as a part of human nutrition and led to a surge in the demand for probiotics in clinical applications and as functional foods. The ability of probiotics to promote health is attributed to the various beneficial effects exerted by these microorganisms on the host. These include lactose metabolism and food digestion, production of antimicrobial peptides and control of enteric infections, anticarcinogenic properties, immunologic enhancement, enhancement of short-chain fatty acid production, antiatherogenic and cholesterol-lowering attributes, regulatory role in allergy, protection against vaginal or urinary tract infections, increased nutritional value, maintenance of epithelial integrity and barrier, stimulation of repair mechanism in cells, and maintenance and reestablishment of well-balanced indigenous intestinal and respiratory microbial communities. Most of these attributes primarily focus on the effect of probiotic supplementation on the host. Hence, in most cases, it can be concluded that the ability of a probiotic to protect the host from infection is an indirect result of promoting overall health and well-being. However, probiotics also exert a direct effect on invading microorganisms. The direct modes of action resulting in the elimination of pathogens include inhibition of pathogen replication by producing antimicrobial substances like bacteriocins, competition for limiting resources in the host, antitoxin effect, inhibition of virulence, antiadhesive and antiinvasive effects, and competitive exclusion by competition for binding sites or stimulation of epithelial barrier function. Although much has been documented about the ability of probiotics to promote host health, there is limited discussion on the above mentioned effects of probiotics on pathogens. Being in an era of antibiotic resistance, a better understanding of this complex probiotic-pathogen interaction is critical for development of effective strategies to control infections. Therefore, this chapter will focus on the ability of probiotics to directly modulate the infectious nature of pathogens and the underlying mechanisms that mediate these effects.
Collapse
|
50
|
Li T, Lu X, Yang X. Evaluation of clinical safety and beneficial effects of stachyose-enriched α-galacto-oligosaccharides on gut microbiota and bowel function in humans. Food Funct 2017; 8:262-269. [DOI: 10.1039/c6fo01290f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This is the first study providing clinical bases for developing DSG as a novel and safe agent against functional constipation.
Collapse
Affiliation(s)
- Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xinshan Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|