1
|
Bayón-Gil Á, Martinez-Picado J, Puertas MC. Viremic non-progression in HIV/SIV infection: A tied game between virus and host. Cell Rep Med 2025; 6:101921. [PMID: 39842407 DOI: 10.1016/j.xcrm.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
High-efficacy antiretroviral treatment (ART) has been a game-changer for HIV/AIDS pandemic, but incomplete CD4+ T cell recovery and persistent chronic immune activation still affect HIV-suppressed people. Exceptional cases of HIV infection that naturally exhibit delayed disease progression provide invaluable insights into protective biological mechanisms with potential clinical application. Viremic non-progressors (VNPs) represent an extremely rare population of individuals with HIV, characterized by preservation of the CD4+ T cell compartment despite persistent high levels of viral load (>10,000 copies/mL). While only a few studies have investigated the immunovirological characteristics of adult and pediatric VNPs, most of our knowledge about this phenotype stems from its non-human-primate counterpart, the natural simian immunodeficiency virus (SIV) hosts. In this review, we synthesize the insights gained from recent studies of natural SIV hosts and VNPs and evaluate the potential similarities and differences in the mechanisms that underlie the absence of pathogenesis, with special focus on the control of immune activation.
Collapse
Affiliation(s)
- Ángel Bayón-Gil
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Bittner-Eddy PD, Fischer LA, Parachuru PV, Costalonga M. MHC-II presentation by oral Langerhans cells impacts intraepithelial Tc17 abundance and Candida albicans oral infection via CD4 T cells. FRONTIERS IN ORAL HEALTH 2024; 5:1408255. [PMID: 38872986 PMCID: PMC11169704 DOI: 10.3389/froh.2024.1408255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In a murine model (LCΔMHC-II) designed to abolish MHC-II expression in Langerhans cells (LCs), ∼18% of oral LCs retain MHC-II, yet oral mucosal CD4 T cells numbers are unaffected. In LCΔMHC-II mice, we now show that oral intraepithelial conventional CD8αβ T cell numbers expand 30-fold. Antibody-mediated ablation of CD4 T cells in wild-type mice also resulted in CD8αβ T cell expansion in the oral mucosa. Therefore, we hypothesize that MHC class II molecules uniquely expressed on Langerhans cells mediate the suppression of intraepithelial resident-memory CD8 T cell numbers via a CD4 T cell-dependent mechanism. The expanded oral CD8 T cells co-expressed CD69 and CD103 and the majority produced IL-17A [CD8 T cytotoxic (Tc)17 cells] with a minority expressing IFN-γ (Tc1 cells). These oral CD8 T cells showed broad T cell receptor Vβ gene usage indicating responsiveness to diverse oral antigens. Generally supporting Tc17 cells, transforming growth factor-β1 (TGF-β1) increased 4-fold in the oral mucosa. Surprisingly, blocking TGF-β1 signaling with the TGF-R1 kinase inhibitor, LY364947, did not reduce Tc17 or Tc1 numbers. Nonetheless, LY364947 increased γδ T cell numbers and decreased CD49a expression on Tc1 cells. Although IL-17A-expressing γδ T cells were reduced by 30%, LCΔMHC-II mice displayed greater resistance to Candida albicans in early stages of oral infection. These findings suggest that modulating MHC-II expression in oral LC may be an effective strategy against fungal infections at mucosal surfaces counteracted by IL-17A-dependent mechanisms.
Collapse
Affiliation(s)
- Peter D. Bittner-Eddy
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Lori A. Fischer
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Praveen Venkata Parachuru
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Massimo Costalonga
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Su B, Kong D, Yang X, Zhang T, Kuang YQ. Mucosal-associated invariant T cells: a cryptic coordinator in HIV-infected immune reconstitution. J Med Virol 2022; 94:3043-3053. [PMID: 35243649 DOI: 10.1002/jmv.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes considerable morbidity and mortality worldwide. Although antiretroviral therapy (ART) has largely transformed HIV infection from a fatal disease to a chronic condition, approximately 10%~40% of HIV-infected individuals who receive effective ART and sustain long-term viral suppression still cannot achieve optimal immune reconstitution. These patients are called immunological non-responders, a state associated with poor clinical prognosis. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved unconventional T cell subset defined by expression of semi-invariant αβ T cell receptor (TCR), which recognizes metabolites derived from the riboflavin biosynthetic pathway presented on major histocompatibility complex (MHC)-related protein-1 (MR1). MAIT cells, which are considered to act as a bridge between innate and adaptive immunity, produce a wide range of cytokines and cytotoxic molecules upon activation through TCR-dependent and TCR-independent mechanisms, which is of major importance in defense against a variety of pathogens. In addition, MAIT cells are involved in autoimmune and immune-mediated diseases. The number of MAIT cells is dramatically and irreversibly decreased in the early stage of HIV infection and is not fully restored even after long-term suppressive ART. In light of the important role of MAIT cells in mucosal immunity and because microbial translocation is inversely associated with CD4+ T cell counts, we propose that MAIT cells participate in the maintenance of intestinal barrier integrity and microbial homeostasis, thus further affecting immune reconstitution in HIV-infected individuals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
4
|
Wang XH, Song TZ, Zheng HY, Li YH, Zheng YT. Jejunal epithelial barrier disruption triggered by reactive oxygen species in early SIV infected rhesus macaques. Free Radic Biol Med 2021; 177:143-155. [PMID: 34687865 DOI: 10.1016/j.freeradbiomed.2021.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Intestinal epithelial barrier destruction occurs earlier than mucosal immune dysfunction in the acute stage of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. At present, however, the cause of compromised gastrointestinal integrity in early SIV infection remains unknown. In the current study, we investigated the effects of SIV infection on epithelial barrier integrity and explored oxidative stress-mediated DNA damage and apoptosis in epithelial cells from early acute SIVmac239-infected Chinese rhesus macaques (Macaca mulatta). Results showed that the sensitive molecular marker of small intestinal barrier dysfunction, i.e., intestinal fatty acid-binding protein (IFABP), was significantly increased in plasma at 14 days post-SIV infection. SIV infection induced a profound decrease in the expression of tight junction proteins, including claudin-1, claudin-3, and zonula occludens (ZO)-1, as well as a significant increase in the active form of caspase-3 level in epithelial cells. RNA sequencing (RNA-seq) analysis suggested that differentially expressed genes between pre- and post-SIV-infected jejuna were enriched in pathways involved in cell redox homeostasis, oxidoreductase activity, and mitochondria. Indeed, a SIV-mediated increase in reactive oxygen species (ROS) in the epithelium and macrophages, as well as an increase in hydrogen peroxide (H2O2) and decrease in glutathione (GSH)/glutathione disulfide (GSSG) antioxidant defense, were observed in SIV-infected jejuna. In addition, the accumulation of mitochondrial dysfunction and DNA oxidative damage led to an increase in senescence-associated β-galactosidase (SA-β-gal) and early apoptosis in intestinal epithelial cells. Furthermore, HIV-1 Tat protein-induced epithelial monolayer disruption in HT-29 cells was rescued by antioxidant N-acetylcysteine (NAC). These results indicate that mitochondrial dysfunction and oxidative stress in jejunal epithelial cells are primary contributors to gut epithelial barrier disruption in early SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- Xue-Hui Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yong-Tang Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
5
|
Zhang ZS, Gu Y, Liu BG, Tang H, Hua Y, Wang J. Oncogenic role of Tc17 cells in cervical cancer development. World J Clin Cases 2020; 8:11-19. [PMID: 31970165 PMCID: PMC6962079 DOI: 10.12998/wjcc.v8.i1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND As one of the subsets of CD8+ T cells, Tc17 cells have recently been identified and are characterized by the secretion of interleukin (IL)-17, which is related to inflammatory diseases.
AIM To assess the status of Tc17 cells in cervical cancer and investigate the biological function of Tc17 cells in cervical cancer development.
METHODS Flow cytometry assay, immunohistochemistry, and immunofluorescence were performed to detect the levels and phenotype of Tc17 cells in blood and tumor samples from patients with cervical cancer. Prior to cell suspension culture, ELISA was carried out to measure the production of IL-6, IL-1β, IL-23, CXCL12, and IL-17 in tumor tissue supernatant and co-cultured supernatant of patients with cervical cancer. In addition, multivariate analysis was performed to identify factors associated with overall survival using the Cox proportional hazards model.
RESULTS Compared with normal tissues, Tc17 cells specifically accumulated in tumor tissues of cervical cancer patients. Cancer cells produced a greater amount of IL-6, IL-1β, and IL-23, which in turn promoted Tc17 cell polarization. Unlike the traditional cytotoxic CD8+ T cells, Tc17 cells secreted IL-17, which subsequently promoted CXCL12 expression in tumor cells, eventually enhancing the proliferation and migration of tumor cells. Thus, the ratio of tumor-infiltrating Tc17 cells was highly correlated with poor clinical outcome in patients with cervical cancer.
CONCLUSION Our data identified the oncogenic role of Tc17 cells in the development of cervical cancer. We propose that the ratio of Tc17 cells may be a useful index in the prognosis of patients with cervical cancer.
Collapse
Affiliation(s)
- Zun-Sheng Zhang
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Bing-Gang Liu
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Hong Tang
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Yu Hua
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| |
Collapse
|
6
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
7
|
Zaric M, Becker PD, Hervouet C, Kalcheva P, Doszpoly A, Blattman N, A O' Neill L, Yus BI, Cocita C, Kwon SY, Baker AH, Lord GM, Klavinskis LS. Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8 + effector recruitment to mucosal tissues. Nat Commun 2019; 10:2214. [PMID: 31101810 PMCID: PMC6525176 DOI: 10.1038/s41467-019-09969-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
CD8+ T cells provide a critical defence from pathogens at mucosal epithelia including the female reproductive tract (FRT). Mucosal immunisation is considered essential to initiate this response, however this is difficult to reconcile with evidence that antigen delivered to skin can recruit protective CD8+ T cells to mucosal tissues. Here we dissect the underlying mechanism. We show that adenovirus serotype 5 (Ad5) bio-distributes at very low level to non-lymphoid tissues after skin immunisation. This drives the expansion and activation of CD3- NK1.1+ group 1 innate lymphoid cells (ILC1) within the FRT, essential for recruitment of CD8+ T-cell effectors. Interferon gamma produced by activated ILC1 is critical to licence CD11b+Ly6C+ monocyte production of CXCL9, a chemokine required to recruit skin primed CXCR3+ CD8+T-cells to the FRT. Our findings reveal a novel role for ILC1 to recruit effector CD8+ T-cells to prevent virus spread and establish immune surveillance at barrier tissues.
Collapse
Affiliation(s)
- Marija Zaric
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Pablo D Becker
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Catherine Hervouet
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Petya Kalcheva
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Andor Doszpoly
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Negin Blattman
- Biodesign Institute, Centre for Infectious Disease and Vaccinology, Arizona State University, Tempe, AZ, 85287, USA
| | - Lauren A O' Neill
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Barbara Ibarzo Yus
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Clement Cocita
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | | | - Andrew H Baker
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Graham M Lord
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Linda S Klavinskis
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
8
|
Amancha PK, Ackerley CG, Duphare C, Lee M, Hu YJ, Amara RR, Kelley CF. Distribution of Functional CD4 and CD8 T cell Subsets in Blood and Rectal Mucosal Tissues. Sci Rep 2019; 9:6951. [PMID: 31061442 PMCID: PMC6502862 DOI: 10.1038/s41598-019-43311-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
A better understanding of the distribution and functional capacity of CD4 T helper (Th) and CD8 T cytotoxic (Tc) cell subsets in the rectal mucosa (RM), a major site for HIV acquisition and replication, in adults is needed. In this study, we compared the distribution of Th and Tc cell subsets between blood and RM compartments in 62 HIV negative men, focusing primarily on IL-17-producing CD4 and CD8 T cells due to their importance in establishing and maintaining mucosal defenses, and examined associations between the frequencies of Th17 and Tc17 cell subsets and the availability of highly HIV-susceptible target cells in the RM. The RM exhibited a distinct immune cell composition comprised of higher frequencies of Th2, Th17, and Tc17 cells compared to the peripheral blood. The majority of Tc17 cells in RM were quadruple-cytokine producers (IL-17A+, IFN-γ+, TNF-α+, and IL4+), whereas most Th17 cells in blood and RM were single IL-17A producers or dual-cytokine producers (IL-17A+TNF-α+). In a separate cohort of 21 HIV positive men, we observed similar tissue distributions of Th and Tc cell subsets, although Tc17 cell frequencies in both blood and tissues were very low. Higher frequencies of multi-cytokine-producing Th17 and Tc17 cells in RM of HIV negative men positively correlated with increased mucosal HIV target cells, suggesting a need to further characterize the effector functions of these cells and their role in HIV acquisition and pathogenesis.
Collapse
Affiliation(s)
- Praveen Kumar Amancha
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Decatur, GA, 30030, United States
- Pfizer Pharmaceuticals, Cambridge, MA, United States
| | - Cassie G Ackerley
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Decatur, GA, 30030, United States
| | - Chandni Duphare
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, United States
| | - Mark Lee
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, United States
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, United States
| | - Rama R Amara
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, United States
| | - Colleen F Kelley
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Decatur, GA, 30030, United States.
| |
Collapse
|
9
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
O'Connor MA, Munson PV, Tunggal HC, Hajari N, Lewis TB, Bratt D, Moats C, Smedley J, Bagley KC, Mullins JI, Fuller DH. Mucosal T Helper 17 and T Regulatory Cell Homeostasis Correlate with Acute Simian Immunodeficiency Virus Viremia and Responsiveness to Antiretroviral Therapy in Macaques. AIDS Res Hum Retroviruses 2019; 35:295-305. [PMID: 30398361 DOI: 10.1089/aid.2018.0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Depletion of gut T helper 17 (Th17) cells during HIV infection leads to decreased mucosal integrity and increased disease progression. Conversely, T regulatory (Treg) cells may inhibit antiviral responses or immune activation. In HIV elite controllers, a balanced Th17/Treg ratio is maintained in the blood, suggesting a role for these responses in controlling inflammation and viral replication. HIV-infected individuals exhibit a range in responsiveness to combination antiretroviral therapy (cART). Given the link between the Th17/Treg ratio and HIV disease, we reasoned these responses may play a role in cART responsiveness. In this study, we investigated the relationship between the mucosal Th17/Treg ratio to acute simian immunodeficiency virus (SIV) viremia and the response to cART. Nineteen rhesus macaques were infected with highly pathogenic SIVΔB670 virus and cART was initiated 6 weeks postinfection. Mucosal CD4 T cell subsets were assessed by intracellular cytokine staining in the colon and mesenteric lymph nodes. Higher baseline Th17/Treg ratios corresponded with increased acute SIV viremia. Th17/Treg ratios decreased during acute SIV infection and were not restored during cART, and this corresponded to increased gut immune activation (Ki67+), markers of microbial translocation (sCD14), and T cell exhaustion (TIGIT+). Animals that maintained a more balanced mucosal Th17/Treg ratio at the time of cART initiation exhibited a better virological response to cART and maintained higher peripheral CD4 counts. These results suggest mucosal Th17 and Treg homeostasis influences acute viremia and the response to cART, a result that suggests therapeutic interventions that improve the Th17/Treg ratio before or during cART may improve treatment of HIV.
Collapse
Affiliation(s)
- Megan A. O'Connor
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Paul V. Munson
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Hillary C. Tunggal
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Nika Hajari
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Thomas B. Lewis
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Debra Bratt
- Washington National Primate Research Center, Seattle, Washington
| | - Cassie Moats
- Washington National Primate Research Center, Seattle, Washington
| | - Jeremy Smedley
- Washington National Primate Research Center, Seattle, Washington
| | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| |
Collapse
|
11
|
Pan D, Das A, Srivastav SK, Traina-Dorge V, Didier PJ, Pahar B. Lack of T-cell-mediated IL-2 and TNFα production is linked to decreased CD58 expression in intestinal tissue during acute simian immunodeficiency virus infection. J Gen Virol 2018; 100:26-34. [PMID: 30480508 DOI: 10.1099/jgv.0.001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For an effective T-cell activation and response, co-stimulation is required in addition to the antigen-specific signal from their antigen receptors. The CD2/CD58 interaction is considered as one of the most important T-cell co-stimulatory pathways for T-cell activation and proliferation, and its role in regulating intestinal T-cell function in acute and chronic SIV -infected macaques is poorly documented. Here, we demonstrated a significant reduction of CD58 expression in both T- and B-cell populations during acute SIV infection along with high plasma viral load and a loss of intestinal CD4+ T cells compared to SIV-uninfected control macaques. The reduction of CD58 expression in T cells was correlated with the reduced expression of T-cell-mediated IL-2 and TNFα production. Together, these results indicate that reduction in the CD2/CD58 interaction pathway in mucosal lymphocytes might play a crucial role in mucosal T-cell dysfunction during acute SIV/HIV infection.
Collapse
Affiliation(s)
- Diganta Pan
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Arpita Das
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Sudesh K Srivastav
- 3Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, USA
| | - Vicki Traina-Dorge
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Peter J Didier
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Bapi Pahar
- 1Division of Comparative Pathology, Covington, Louisiana
| |
Collapse
|
12
|
Perdomo-Celis F, Feria MG, Taborda NA, Rugeles MT. A Low Frequency of IL-17-Producing CD8 + T-Cells Is Associated With Persistent Immune Activation in People Living With HIV Despite HAART-Induced Viral Suppression. Front Immunol 2018; 9:2502. [PMID: 30420859 PMCID: PMC6215827 DOI: 10.3389/fimmu.2018.02502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Immune activation is the hallmark of HIV infection, even in patients with highly active anti-retroviral therapy (HAART)-induced viral suppression. A major cause of immune activation during HIV infection is the intestinal microbial translocation as a consequence, among other factors, of the decrease and/or dysfunction of interleukin (IL)-17-producing T-cells, due to their role promoting the integrity of the intestinal barrier. A population of IL-17-producing CD8+ T-cells (Tc17 cells), characterized by the expression of CD161, has been described, but its relation with the persistent immune activation in non-viremic people living with HIV (PLWH) on HAART is unclear. By flow cytometry, we characterized the activation phenotype (evaluated by the expression of HLA-DR and CD38) of circulating CD161-expressing CD8+ T-cells; in addition, we explored the functionality of polyclonally-stimulated Tc17 cells in PLWH under HAART-induced viral suppression, and in healthy individuals. Finally, we determined the association of Tc17 cells with the expression of cellular and soluble activation markers. Circulating CD161-expressing CD8+ T-cells were decreased in PLWH compared with healthy individuals, despite their similar basal activation state. After polyclonal stimulation, IL-17 production was higher in CD8+ T-cells co-expressing HLA-DR and CD38 in healthy individuals. In contrast, although PLWH had a higher frequency of HLA-DR+ CD38+ CD8+ T-cells after stimulation, they had a lower production of IL-17. Interferon (IFN)-γ-producing CD8+ T-cells (Tc1 cells) were increased in PLWH. The low Tc17 cells response was associated with a high expression of CD38 and programmed death 1 protein, high levels of soluble CD14 and the treatment duration. Finally, to explore potential immunomodulatory strategies, the in vitro effect of the anti-inflammatory agent sulfasalazine was assessed on Tc17 cells. Interestingly, a decreased inflammatory environment, death of activated CD8+ T-cells, and an increased frequency of Tc17 cells were observed with sulfasalazine treatment. Thus, our findings suggest that activated CD8+ T-cells have a marked capacity to produce IL-17 in healthy individuals, but not in PLWH, despite HAART. This dysfunction of Tc17 cells is associated with the persistent immune activation observed in these patients, and can be partially restored by anti-inflammatory agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Manuel G Feria
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
13
|
Warren S, Kheterpal M, Myskowski PL, Moskowitz A, Horwitz SM, Pulitzer MP. Unrelated immunodeficiency states may impact outcomes and immune checkpoint molecule expression in patients with mycosis fungoides: A clinicopathologic case-control study. J Am Acad Dermatol 2017; 78:530-539. [PMID: 29132694 DOI: 10.1016/j.jaad.2017.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Immunodeficiency (ID) correlates with worse outcomes and decreased immune checkpoint molecule expression in melanoma. The impact of ID in mycosis fungoides (MF) is unknown. OBJECTIVE Our goal was to evaluate the impact of ID in MF. METHODS We conducted a case-control study of 17 patients with MF and ID versus age-, stage-, and race-matched controls as a subset of a comparative analysis of 23 patients with MF with ID (prior lymphoma, recent/current pregnancy, HIV, hypogammaglobulinemia, and prior chemotherapy) versus without ID. Programmed cell death 1 (PD1), programmed death ligand 1 (PDL1), forkhead box p3, and interleukin 17 immunohistochemistry was performed on 12 patients with ID and 10 controls. RESULTS Patients with ID had more treatment failure (14 of 23 vs 5 of 17 [P = .028]), more treatment failure within 3 years of diagnosis (12 of 23 vs 4 of 17 [P = .050]), more angiocentrism (6 of 12 vs 0 of 10 [P = .005]), larger cells (1.92 ± 0.51 out of 3 vs 1.30 ± 0.48 out of 3 [P = .009]), more cases with at least 10% PD1 positivity (9 of 11 vs 4 of 10 [P = .031]) and at least 10% PDL1 positivity (7 of 12 vs 2 of 10 [P = .042]), and a higher average percentage of PD1+ cells (43.27 ± 40.22 vs 11.2 ± 13.62 [P = .028]). No differences in survival, forkhead box p3 expression, interleukin 17 expression, histologic depth, ulceration, granulomatous changes, or syringotropism were seen. LIMITATIONS This was a small single-center study with heterogeneous immunodeficiencies. CONCLUSION ID correlated with worse outcomes and increased PD1 and PDL1 expression in MF. Patients with MF and ID may be candidates for immune checkpoint inhibitor therapy, pending further investigation.
Collapse
Affiliation(s)
- Shay Warren
- Department of Pathology, Dermatopathology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meenal Kheterpal
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patricia L Myskowski
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alison Moskowitz
- Hematology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Horwitz
- Hematology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa P Pulitzer
- Department of Pathology, Dermatopathology Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
14
|
d'Ettorre G, Rossi G, Scagnolari C, Andreotti M, Giustini N, Serafino S, Schietroma I, Scheri GC, Fard SN, Trinchieri V, Mastromarino P, Selvaggi C, Scarpona S, Fanello G, Fiocca F, Ceccarelli G, Antonelli G, Brenchley JM, Vullo V. Probiotic supplementation promotes a reduction in T-cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART-treated HIV-1-positive patients. Immun Inflamm Dis 2017; 5:244-260. [PMID: 28474815 PMCID: PMC5569369 DOI: 10.1002/iid3.160] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION HIV infection is characterized by a persistent immune activation associated to a compromised gut barrier immunity and alterations in the profile of the fecal flora linked with the progression of inflammatory symptoms. The effects of high concentration multistrain probiotic (Vivomixx®, Viale del Policlinico 155, Rome, Italy in EU; Visbiome®, Dupont, Madison, Wisconsin in USA) on several aspects of intestinal immunity in ART-experienced HIV-1 patients was evaluated. METHODS A sub-study of a longitudinal pilot study was performed in HIV-1 patients who received the probiotic supplement twice a day for 6 months (T6). T-cell activation and CD4+ and CD8+ T-cell subsets expressing IFNγ (Th1, Tc1) or IL-17A (Th17, Tc17) were stained by cytoflorimetric analysis. Histological and immunohistochemical analyses were performed on intestinal biopsies while enterocytes apoptosis index was determined by TUNEL assay. RESULTS A reduction in the frequencies of CD4+ and CD8+ T-cell subsets, expressing CD38+ , HLA-DR+ , or both, and an increase in the percentage of Th17 cell subsets, especially those with central or effector memory phenotype, was recorded in the peripheral blood and in gut-associated lymphoid tissue (GALT) after probiotic intervention. Conversely, Tc1 and Tc17 levels remained substantially unchanged at T6, while Th1 cell subsets increase in the GALT. Probiotic supplementation was also associated to a recovery of the integrity of the gut epithelial barrier, a reduction of both intraepithelial lymphocytes density and enterocyte apoptosis and, an improvement of mitochondrial morphology sustained in part by a modulation of heat shock protein 60. CONCLUSIONS These findings highlight the potential beneficial effects of probiotic supplementation for the reconstitution of physical and immunological integrity of the mucosal intestinal barrier in ART-treated HIV-1-positive patients.
Collapse
Affiliation(s)
- Gabriella d'Ettorre
- Department of Public Health and Infectious DiseasesAzienda Policlinico Umberto I of RomeRomeItaly
| | - Giacomo Rossi
- School of BiosciencesVeterinary Medicine University of CamerinoMatelicaItaly
| | - Carolina Scagnolari
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza University of RomeRomeItaly
| | - Mauro Andreotti
- Department of Therapeutic Research and Medicines EvaluationItalian Institute of HealthRomeItaly
| | - Noemi Giustini
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Sara Serafino
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Ivan Schietroma
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | | | - Saeid Najafi Fard
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Vito Trinchieri
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Paola Mastromarino
- Section of MicrobiologyDepartment of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Carla Selvaggi
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza University of RomeRomeItaly
| | - Silvia Scarpona
- School of BiosciencesVeterinary Medicine University of CamerinoMatelicaItaly
| | - Gianfranco Fanello
- Department of Emergency Surgery—Emergency Endoscopic UnitPoliclinico Umberto ISapienza University of RomeRomeItaly
| | - Fausto Fiocca
- Department of Emergency Surgery—Emergency Endoscopic UnitPoliclinico Umberto ISapienza University of RomeRomeItaly
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious DiseasesAzienda Policlinico Umberto I of RomeRomeItaly
| | - Guido Antonelli
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza University of RomeRomeItaly
| | - Jason M. Brenchley
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious Diseases, NIHBethesdaMarylandUSA
| | - Vincenzo Vullo
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| |
Collapse
|
15
|
Gonzalez SM, Taborda NA, Rugeles MT. Role of Different Subpopulations of CD8 + T Cells during HIV Exposure and Infection. Front Immunol 2017; 8:936. [PMID: 28824656 PMCID: PMC5545716 DOI: 10.3389/fimmu.2017.00936] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8+ T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8+ T cells, as evidenced in HLA-DR+ CD38− cells. CD8+ T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8+ T cells in relation with natural resistance to HIV infection and progression.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
16
|
Abstract
The interleukin-17 (IL-17) family cytokines, such as IL-17A and IL-17F, play
important protective roles in host immune response to a variety of infections
such as bacterial, fungal, parasitic, and viral. The IL-17R signaling and
downstream pathways mediate induction of proinflammatory molecules which
participate in control of these pathogens. However, the production of IL-17 can
also mediate pathology and inflammation associated with infections. In this
review, we will discuss the yin-and-yang roles of IL-17 in host immunity to
pathogens.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| | - Shabaana Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
17
|
Berry N, Manoussaka M, Ham C, Ferguson D, Tudor H, Mattiuzzo G, Klaver B, Page M, Stebbings R, Das AT, Berkhout B, Almond N, Cranage MP. Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine. PLoS Pathog 2016; 12:e1006083. [PMID: 28002473 PMCID: PMC5176322 DOI: 10.1371/journal.ppat.1006083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/21/2016] [Indexed: 01/24/2023] Open
Abstract
In order to evaluate the role of persisting virus replication during occult phase immunisation in the live attenuated SIV vaccine model, a novel SIVmac239Δnef variant (SIVrtTA) genetically engineered to replicate in the presence of doxycycline was evaluated for its ability to protect against wild-type SIVmac239. Indian rhesus macaques were vaccinated either with SIVrtTA or with SIVmac239Δnef. Doxycycline was withdrawn from 4 of 8 SIVrtTA vaccinates before challenge with wild-type virus. Unvaccinated challenge controls exhibited ~107 peak plasma viral RNA copies/ml persisting beyond the acute phase. Six vaccinates, four SIVmac239Δnef and two SIVrtTA vaccinates exhibited complete protection, defined by lack of wild-type viraemia post-challenge and virus-specific PCR analysis of tissues recovered post-mortem, whereas six SIVrtTA vaccinates were protected from high levels of viraemia. Critically, the complete protection in two SIVrtTA vaccinates was associated with enhanced SIVrtTA replication in the immediate post-acute vaccination period but was independent of doxycycline status at the time of challenge. Mutations were identified in the LTR promoter region and rtTA gene that do not affect doxycycline-control but were associated with enhanced post-acute phase replication in protected vaccinates. High frequencies of total circulating CD8+T effector memory cells and a higher total frequency of SIV-specific CD8+ mono and polyfunctional T cells on the day of wild-type challenge were associated with complete protection but these parameters were not predictive of outcome when assessed 130 days after challenge. Moreover, challenge virus-specific Nef CD8+ polyfunctional T cell responses and antigen were detected in tissues post mortem in completely-protected macaques indicating post-challenge control of infection. Within the parameters of the study design, on-going occult-phase replication may not be absolutely required for protective immunity. Development of an HIV vaccine remains a global health priority. In non-human primates live-attenuated SIV induces a potent vaccine effect. Following disappearance of vaccine virus from the peripheral circulation replication persists in lymphoid tissue. To address whether this occult replication is critical to the generation of protective immunity we used a novel construct (SIVrtTA) based on the prototypic live attenuated SIVmac239Δnef but which requires the presence of the antibiotic doxycycline to replicate. Protection appeared independent of doxycycline status at the time of virulent virus challenge suggesting that occult replication may not be absolutely necessary for persistence of immunity; however, stronger protection was observed in monkeys vaccinated with SIVrtTA where vaccine replication persisted for longer after peak viraemia. Moreover, some evidence of very low level breakthrough of vaccine virus replication was seen and protection was weaker than that obtained with SIVmac239Δnef. Both vaccination and challenge perturbed circulating T cell populations, but only the frequency of SIV-specific CD8+ polyfunctional T cells measured on the day of challenge was associated with protection. Replication-conditional mutants such as SIVrtTA have great potential in unlocking the complex interactions between the vaccine virus and host responses in the generation of potent anti-viral protection in vivo.
Collapse
Affiliation(s)
- Neil Berry
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
- * E-mail:
| | - Maria Manoussaka
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Claire Ham
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Deborah Ferguson
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Hannah Tudor
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Page
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Richard Stebbings
- Division of Biotherapeutics, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Atze T. Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil Almond
- Division of Virology, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Martin P. Cranage
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
18
|
Lu X, Li Z, Li Q, Jiao Y, Ji Y, Zhang H, Liu Z, Li W, Wu H. Preferential loss of gut-homing α4β7 CD4 + T cells and their circulating functional subsets in acute HIV-1 infection. Cell Mol Immunol 2016; 13:776-784. [PMID: 26277899 PMCID: PMC5101442 DOI: 10.1038/cmi.2015.60] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/10/2023] Open
Abstract
Preferential infection and depletion of gut-homing α4β7 CD4+ T cells in the blood are observed in chronic HIV/SIV infection. The dynamic change in gut-homing α4β7 CD4+ T cells and their functional subsets during the acute stages of HIV-1 infection are less documented. Therefore, we conducted a cohort study to investigate whether acute HIV-1 infection induced abnormalities in gut-homing α4β7 CD4+ T cells and their functional subsets. We examined the frequency, absolute number, and functionality of gut-homing α4β7 CD4+ T cells in 26 acute HIV-1-infected patients compared with 20 healthy individuals. We found that circulating gut-homing α4β7 CD4+ T cells were preferentially depleted during acute HIV-1 infection and were positively correlated with absolute CD4+ T-cell count in blood. Notably, Th17 and Th1 cell subsets of gut-homing CD4+ T cells were also decreased, which resulted in an imbalance of T helper cells (Th1):regulatory T cells (Treg) and Treg:Th17 ratios. Gut-homing Th17 and Th1 cells were also positively correlated with the absolute number of total CD4+ T cells and gut-homing CD4+ T cells. The gut-homing Treg:Th17 ratio was inversely correlated with the CD4+ T-cell count. Taken together, the analyses of our acute HIV-1 cohort demonstrate that gut-homing α4β7 CD4+ T cells and their functional subsets were profoundly depleted during acute HIV-1 infection, which may have resulted in the persistent loss of circulating CD4+ T cells and an imbalance of Th1:Treg and Treg:Th17 ratios and contribute to HIV-1 disease pathogenesis.
Collapse
Affiliation(s)
- Xiaofan Lu
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing 100069, People's Republic of China
| | - Zhen Li
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing 100069, People's Republic of China
| | - Qunhui Li
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yanmei Jiao
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing 100069, People's Republic of China
| | - Yunxia Ji
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing 100069, People's Republic of China
| | - Hongwei Zhang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Zhuoming Liu
- Case Comprehensive Cancer Center and Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wei Li
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing 100069, People's Republic of China
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
19
|
Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathog 2016; 12:e1005774. [PMID: 27509048 PMCID: PMC4980058 DOI: 10.1371/journal.ppat.1005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Elevated blood CXCL10/IP-10 levels during primary HIV-1 infection (PHI) were described as an independent marker of rapid disease onset, more robust than peak viremia or CD4 cell nadir. IP-10 enhances the recruitment of CXCR3+ cells, which include major HIV-target cells, raising the question if it promotes the establishment of viral reservoirs. We analyzed data from four cohorts of HIV+ patients, allowing us to study IP-10 levels before infection (Amsterdam cohort), as well as during controlled and uncontrolled viremia (ANRS cohorts). We also addressed IP-10 expression levels with regards to lymphoid tissues (LT) and blood viral reservoirs in patients and non-human primates. Pre-existing elevated IP-10 levels but not sCD63 associated with rapid CD4 T-cell loss upon HIV-1 infection. During PHI, IP-10 levels and to a lesser level IL-18 correlated with cell-associated HIV DNA, while 26 other inflammatory soluble markers did not. IP-10 levels tended to differ between HIV controllers with detectable and undetectable viremia. IP-10 was increased in SIV-exposed aviremic macaques with detectable SIV DNA in tissues. IP-10 mRNA was produced at higher levels in the small intestine than in colon or rectum. Jejunal IP-10+ cells corresponded to numerous small and round CD68neg cells as well as to macrophages. Blood IP-10 response negatively correlated with RORC (Th17 marker) gene expression in the small intestine. CXCR3 expression was higher on memory CD4+ T cells than any other immune cells. CD4 T cells from chronically infected animals expressed extremely high levels of intra-cellular CXCR3 suggesting internalization after ligand recognition. Elevated systemic IP-10 levels before infection associated with rapid disease progression. Systemic IP-10 during PHI correlated with HIV DNA. IP-10 production was regionalized in the intestine during early SIV infection and CD68+ and CD68neg haematopoietic cells in the small intestine appeared to be the major source of IP-10. Chronic immune activation is a hallmark of HIV infection and contributes in multiple ways to HIV persistence. Here, we gained insights on the association between a pro-inflammatory chemokine, CXCL10/IP-10 and HIV infection in four cohorts of HIV+ individuals, studied at distinct stages of infection (before, primary and chronic stage with spontaneous- and treatment-controlled infection). We further analyzed pathogenic and non-pathogenic SIV infections to address IP-10 levels and the presence of infected cells in tissues (lymph nodes, small and large intestine). We found that elevated systemic IP-10 levels before HIV-1 infection associate with a more rapid disease progression. During primary infection, IP-10 in blood strongly correlated with the amount of infected cells in blood. The animal model showed that IP-10 expression was regionalized in the intestine and highest in the small intestine. Studies of aviremic animals suggest that high IP-10 is indicative of viral replication in lymphoid tissues. Haematopoietic cells rather than epithelial/endothelial cells mainly contributed to the IP-10 production in small intestine (jejunum). The receptor of IP-10 was highly expressed on memory CD4+ T cells, i.e. major target cells for the virus. This study contributes to our understanding of the establishment of HIV reservoirs and why IP-10 associates with HIV/AIDS.
Collapse
|
20
|
Zhang L, Zhou L, Ge X, Guo X, Han J, Yang H. The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus infection suppresses Th17 cells response in vivo. Vet Microbiol 2016; 189:75-85. [PMID: 27259830 DOI: 10.1016/j.vetmic.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 01/21/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to immunomodulate innate and adaptive immunity of pigs. The Chinese highly pathogenic PRRSV (HP-PRRSV) infection causes severe bacterial secondary infection in pigs. However, the mechanism in relation to the bacterial secondary infection induced by HP-PRRSV remains unknown. In the present study, Th17 cells response in peripheral blood, lungs, spleens and lymph nodes of piglets were analyzed, and bacterial loads in lungs of piglets were examined upon HP-PRRSV infection. Meanwhile the changes of CD4(+) and CD8(+) T cells in peripheral blood of the inoculated piglets were analyzed. The results showed that HP-PRRSV-inoculated piglets exhibited a suppressed Th17 cells response in peripheral blood and a reduced number of Th17 cells in lungs, and higher bacterial loads in lungs, compared with low pathogenic PRRSV. Moreover, HP-PRRSV obviously resulted in severe depletion of porcine T cells in peripheral blood at the early stage of infection. These findings indicate that HP-PRRSV infection suppresses the response of Th17 cells that play an important role in combating bacterial infections, suggesting a possible correlation between the suppression of Th17 cells response in vivo and bacterial secondary infection induced by HP-PRRSV. Our present study adds a novel insight into better understanding of the pathogenesis of the Chinese HP-PRRSV.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
21
|
Ponte R, Mehraj V, Ghali P, Couëdel-Courteille A, Cheynier R, Routy JP. Reversing Gut Damage in HIV Infection: Using Non-Human Primate Models to Instruct Clinical Research. EBioMedicine 2016; 4:40-9. [PMID: 26981570 PMCID: PMC4776249 DOI: 10.1016/j.ebiom.2016.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART) has led to dramatic improvements in the lives of HIV-infected persons. However, residual immune activation, which persists despite ART, is associated with increased risk of non-AIDS morbidities. Accumulating evidence shows that disruption of the gut mucosal epithelium during SIV/HIV infections allows translocation of microbial products into the circulation, triggering immune activation. This disruption is due to immune, structural and microbial alterations. In this review, we highlighted the key findings of gut mucosa studies of SIV-infected macaques and HIV-infected humans that have revealed virus-induced changes of intestinal CD4, CD8 T cells, innate lymphoid cells, myeloid cells, and of the local cytokine/chemokine network in addition to epithelial injuries. We review the interplay between the host immune response and the intestinal microbiota, which also impacts disease progression. Collectively, these studies have instructed clinical research on early ART initiation, modifiers of microbiota composition, and recombinant cytokines for restoring gut barrier integrity.
Collapse
Affiliation(s)
- Rosalie Ponte
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Vikram Mehraj
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter Ghali
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Anne Couëdel-Courteille
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Université Paris Diderot, Paris 75013, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada; Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Regulation of Interleukin-17 Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:139-166. [DOI: 10.1007/978-94-024-0921-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Zhong F, Cui D, Tao H, Du H, Xing C. IL-17A-producing T cells and associated cytokines are involved in the progression of gastric cancer. Oncol Rep 2015; 34:2365-74. [PMID: 26352729 DOI: 10.3892/or.2015.4246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/26/2015] [Indexed: 01/26/2023] Open
Abstract
Interleukin-17A-producing T cells (IL-17A+ T) (IL-17A+CD4+ Th17, IL-17A+CD8+ Tc17 and IL-17A+ γδT17 cells) and associated cytokines (IL-17A, IL-23 and IL-1β) play crucial roles in inflammation-associated diseases, such as infection, autoimmunity and tumors. Th17 cells promote human gastric cancer (GC), although the source of intracellular IL‑17A and the roles of Tc17 and γδT17 cells remain poorly understood. In this study, the frequencies of circulating Th17 and γδT17 cells in patients with GC were found to be significantly increased compared to those in healthy donors; however, Tc17 cells were decreased in these patients, and a negative relationship was found between the frequencies of Th17 and Tc17 cells. Moreover, the cytokine IL‑17A was found to be produced mainly by Th17 cells in human peripheral blood. Similarly, serum cytokine levels and relative mRNA expression levels of IL‑17A, IL‑23 and IL‑1β were significantly increased in patients with GC, and the frequency of Th17 cells was closely associated with serum IL‑17A concentrations in patients with GC. Additionally, Th17 cells and associated cytokines were present at significantly different levels during the progression and metastasis of GC, as were Tc17 and γδT17 cells. Taken together, these findings suggest that IL-17A+ T cells and associated cytokines might play crucial roles in human GC progression and metastasis and thus represent potential targets for treatment.
Collapse
Affiliation(s)
- Fengyun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dawei Cui
- Center of Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hong Tao
- Department of Optometry and Vision Science, Suzhou Health College, Suzhou, Jiangsu 215002, P.R. China
| | - Hong Du
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
24
|
Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia. PLoS Pathog 2015; 11:e1005161. [PMID: 26367276 PMCID: PMC4569330 DOI: 10.1371/journal.ppat.1005161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients. Patients with AIDS, cancer or immune suppressive treatments are vulnerable to infection with invasive fungi. We have found that even when helper CD4 T cells are profoundly reduced in a mouse model that mimics this defect in AIDS, other remaining T cells are capable of mounting vaccine immunity against a deadly fungal infection, and they do so by producing the powerful, soluble product, IL-17. It has been widely believed that the activation and instruction of such cells, called Tc17 cells, is governed by another population of immune cells in the body, but we have found here that pathways within these Tc17 cells themselves mediate their activation and ability to produce the IL-17 needed for resistance to infection. We have also identified elements of the circuitry controlling this pathway—elements called MyD88, Akt1 and mTOR—and found that they control the production of IL-17 and not other products such as IFN-γ often produced by these cells. Further, we determined that this circuitry controls the development of Tc17 cells by regulating their ability to divide and expand. Thus, in a mouse model of vaccination against lethal fungal pneumonia caused by Blastomyces dermatitidis, we uncovered an important cellular arsenal that can be recruited to bolster resistance against a fungal infection, and identified novel ways in which the cells develop and expand into potent killers of fungi.
Collapse
|
25
|
Analysis of Th17 and Tc17 Frequencies and Antiviral Defenses in Gut-Associated Lymphoid Tissue of Chronic HIV-1 Positive Patients. Mediators Inflamm 2015. [PMID: 26221062 PMCID: PMC4499407 DOI: 10.1155/2015/395484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex relationship between both the Th1/Th17 and Tc1/Tc17 axis and innate defences in the intestinal mucosa during HIV-1 infection has not been well characterized. This study examined the frequency, phenotype, and functional status of T cell populations in the gut-associated lymphoid tissue and peripheral blood of virologically suppressed HIV-1-infected patients on therapy, focusing on the Th1, Th17, Tc1, and Tc17 cell subsets. We found a persistent immune cell activation (CD38 and HLADR expression) into the GALT despite the higher levels of Th17 and Tc17 in respect to peripheral blood. An upregulation of type I IFN response in GALT compared to the peripheral blood compartment was also recorded. Furthermore, IFN-α/β levels were negatively related to the frequencies of Th1 naïve cells and Tc1 cell subsets (naïve, central memory, and effector memory) in the GALT. In contrast, no relationships between type I IFN response and Th1 or Tc1 cell subsets in peripheral blood compartment and between IFN-α/β and Th17/Tc17 in both GALT and peripheral blood district were recorded. These data indicate that prolonged antiretroviral treatment improves GALT immune function despite the persistence of immune activation and type I IFN response in chronic HIV-1 positive patients.
Collapse
|
26
|
Dualtropic CXCR6/CCR5 Simian Immunodeficiency Virus (SIV) Infection of Sooty Mangabey Primary Lymphocytes: Distinct Coreceptor Use in Natural versus Pathogenic Hosts of SIV. J Virol 2015; 89:9252-61. [PMID: 26109719 DOI: 10.1128/jvi.01236-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/20/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4(+) T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4(+) T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4(+) T cell loss. IMPORTANCE Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection.
Collapse
|
27
|
Chagas disease reactivation in HIV-coinfected patients: histopathological aspects. Immunobiology 2014; 220:656-62. [PMID: 25541242 DOI: 10.1016/j.imbio.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Chagas disease reactivation has been described in severely immunocompromised patients by various etiologies, including in HIV-coinfected patients. OBJECTIVE This study aimed to perform histopathological and immunohistochemical evaluation of the brain, myocardium, esophagus and large bowel of autopsied patients with CHD and/or acquired immunodeficiency syndrome in comparison with control patients. MATERIAL AND METHODS Autopsy reports were reviewed from 1998 to 2012 and eight adult subjects were selected and divided into four groups: RE, CH, AI and CO. Sections of brain, myocardium, esophagus and large bowel were collected from each subject and processed for histological and immunohistochemical analysis. The histological sections stained with HE, Giemsa and picrosirius were used to quantify the density of inflammatory cells, the density of mast cells, and the percentage of collagen, respectively. Immunohistochemical analysis of IL17 and CD31 was performed. RESULTS The density of mast cells in the myocardium was significantly higher in the CH group than in the other groups. The density of mast cells in the esophagus and in the large bowel was significantly higher when compared to the other groups. The percentage of collagen in the esophagus, myocardium and large bowel was significantly lower in the RE group than in the CO group. The CH group had a higher percentage of collagen in the myocardium and in the large bowel in relation to the other groups. The density of cells immunostained with anti-IL17 was significantly higher in the large bowel and in the myocardium in the CH group than in the CO group. There was higher density of vessels immunostained with anti-CD31 in the myocardium and esophagus of the AI group than in the other groups. There were no significant correlations between the density of mast cells and percentage of collagen in the RE, CO, CH and AI groups. CONCLUSION Brain lesions observed in patients with CDR, as well as the higher density of cells immunostained with anti-IL17 at these sites, suggest that this cytokine was increasing local inflammation with subsequent tissue damage due to inflammation. Furthermore, the higher density of mast cells in the esophagus and large bowel of these subjects suggests that these cells might play a major role in esophageal and intestinal inflammation.
Collapse
|
28
|
Immunoregulatory T cells may be involved in preserving CD4 T cell counts in HIV-infected long-term nonprogressors and controllers. J Acquir Immune Defic Syndr 2014; 65:10-8. [PMID: 23995946 DOI: 10.1097/qai.0b013e3182a7c932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-infected controllers control viral replication and maintain normal CD4 T cell counts. Long-term nonprogressors (LTNPs) also maintain normal CD4 T cell counts but have ongoing viral replication. We hypothesized that immunoregulatory mechanisms are involved in preserved CD4 T cell counts in controllers and in LTNPs. METHODS Twenty HIV-infected viremic controllers, 5 elite controllers (ECs), and 14 LTNPs were included in this cross-sectional study. For comparison, 25 progressors and 34 healthy controls were included. Regulatory T cells (Tregs), Treg subpopulations, CD161+Th17 cells, and CD3+CD8+CD161(high)Tc17 cells in peripheral blood were measured using flow cytometry. Tregs in lymphoid tissue were determined in tonsil biopsies and evaluated using immunolabeling. The production of transforming growth factor beta (TGF-β), interleukin (IL)-10, and IL-17 upon stimulation with phytohemagglutinin in peripheral blood was determined by Luminex. RESULTS All groups of HIV-infected patients displayed similar percentages of Tregs in both peripheral blood and lymphoid tissue. However, a larger percentage of Tregs in ECs and LTNPs were activated compared with that in controls, progressors, and viremic controllers. Further, ECs as the only group of HIV-infected patients, displayed elevated percentages of CD161+Th17 cells, preserved CD3+CD8+CD161(high)Tc17 cells, and preserved IL-10 production. CONCLUSIONS Overall, Treg percentage was similar in both blood and lymphoid tissue in all groups of patients and controls. However, both ECs and LTNPs displayed a large proportion of activated Tregs suggesting immunoregulatory mechanisms to be involved in preserving CD4 T cell counts in HIV-infected nonprogressors.
Collapse
|
29
|
Chiricozzi A, Saraceno R, Chimenti MS, Guttman-Yassky E, Krueger JG. Role of IL-23 in the pathogenesis of psoriasis: a novel potential therapeutic target? Expert Opin Ther Targets 2014; 18:513-25. [PMID: 24568095 DOI: 10.1517/14728222.2014.889686] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disorder determined by the activation of several immune cells and resident tissue cells. Various cytokines mediate inflammatory signals, including IL-23, which is an important factor involved in the differentiation of T helper (Th17) cells. AREAS COVERED Increasing evidence suggests that IL-23 is a central cytokine to the pathogenesis of psoriasis. An overview on both experimental and human data will be reported in order to support the hypothesis of a key pathogenic role of IL-23/Th17 axis. EXPERT OPINION Targeting IL-23 might be a more selective, valid and effective therapeutic approach, which, potentially, may show important advantages in terms of long-term efficacy and safety in the treatment of psoriasis.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- University of Rome Tor Vergata, Department of Dermatology , Via Montpellier 1, 00133, Rome , Italy +39 339 566 8320 ; +39 062 090 2742 ;
| | | | | | | | | |
Collapse
|
30
|
Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev 2014; 254:326-42. [PMID: 23772629 DOI: 10.1111/imr.12065] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite complete or near-complete suppression of human immunodeficiency virus (HIV) replication with combination antiretroviral therapy, both HIV and chronic inflammation/immune dysfunction persist indefinitely. Untangling the association between the virus and the host immune environment during therapy might lead to novel interventions aimed at either curing the infection or preventing the development of inflammation-associated end-organ disease. Chronic inflammation and immune dysfunction might lead to HIV persistence by causing virus production, generating new target cells, enabling infecting of activated and resting target cells, altering the migration patterns of susceptible target cells, increasing the proliferation of infected cells, and preventing normal HIV-specific clearance mechanisms from function. Chronic HIV production or replication might contribute to persistent inflammation and immune dysfunction. The rapidly evolving data on these issues strongly suggest that a vicious cycle might exist in which HIV persistence causes inflammation that in turn contributes to HIV persistence.
Collapse
Affiliation(s)
- Nichole R Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
31
|
Changes of Th17/Tc17 and Th17/Treg cells in endometrial carcinoma. Gynecol Oncol 2014; 132:599-605. [PMID: 24388919 DOI: 10.1016/j.ygyno.2013.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/04/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVES T helper 17 (Th17), T cytotoxic 17 (Tc17) and regulatory T (Treg) cells are important factors in the pathogenesis of inflammatory and autoimmune diseases. However, information concerning the roles of these cells in antitumor immunity or endometrial tumorigenesis remains limited. In this study, we aimed to describe the distribution of Th17, Tc17 and Treg cells in endometrial carcinoma patients, and elucidate the probable role of these effector T cells. METHODS We assessed the expression of interleukin (IL)-17 and Foxp3 in the peripheral blood of endometrial carcinoma patients and healthy controls by flow cytometry to determine the relative numbers of Th17, Tc17 and Treg cells. Th17 cells and Tc17 cells were counted as percentages of the total number of CD3(+) T cells; Treg cells were counted as a percentage of the total number of CD4(+) T cells. We also evaluated Th17 and Tc17 cells in tumor tissue by immunohistochemical staining. IL-17 and IL-10, dominant products of these three cell types, were detected by using enzyme-linked immunosorbent assays. RESULTS The frequencies of Th17, Tc17 and Treg cells, as well as the serum level of IL-10, were significantly elevated in endometrial carcinoma patients compared to healthy controls. The Th17/Tc17 and Th17/Treg ratios were also observed to change significantly. However, there was no significant difference on the IL-17 levels in the serum. Additionally, immunohistochemistry performed on tumor tissues indicated that the amounts of Th17 and Tc17 increased in the cancer patients. CONCLUSIONS Our data suggests a probable involvement of Th17, Tc17 and Treg cells in the pathogenesis of endometrial carcinoma. Restoring the balance of these cells may help with the research and development of immunotherapies for endometrial carcinoma.
Collapse
|
32
|
Reeves RK, Bosinger SE. Innate Immunity in Simian Immunodeficiency Virus Infection. NATURAL HOSTS OF SIV 2014. [PMCID: PMC7149674 DOI: 10.1016/b978-0-12-404734-1.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The past decade has seen the emergence of innate immunity as a mature field. The study of innate immunity has had a significant impact on the concepts of HIV immunity, pathogenesis, and vaccines. In this chapter, basic concepts of innate immunity at the anatomical, cellular, and molecular levels will be introduced from the perspective of their interplay with HIV and simian immunodeficiency virus (SIV). An emphasis will be placed on studies using SIV/non-human primate (NHP) models that shape current models of HIV pathogenesis. Finally, studies modulating the innate system in vivo in NHPs will be discussed.
Collapse
|
33
|
Wong EB, Akilimali NA, Govender P, Sullivan ZA, Cosgrove C, Pillay M, Lewinsohn DM, Bishai WR, Walker BD, Ndung'u T, Klenerman P, Kasprowicz VO. Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PLoS One 2013; 8:e83474. [PMID: 24391773 PMCID: PMC3877057 DOI: 10.1371/journal.pone.0083474] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/02/2013] [Indexed: 12/21/2022] Open
Abstract
Background High expression of CD161 on CD8+ T cells is associated with a population of cells thought to play a role in mucosal immunity. We wished to investigate this subset in an HIV and Mycobacterium tuberculosis (MTB) endemic African setting. Methods A flow cytometric approach was used to assess the frequency and phenotype of CD161++CD8+ T cells. 80 individuals were recruited for cross-sectional analysis: controls (n = 13), latent MTB infection (LTBI) only (n = 14), pulmonary tuberculosis (TB) only (n = 9), HIV only (n = 16), HIV and LTBI co-infection (n = 13) and HIV and TB co-infection (n = 15). The impact of acute HIV infection was assessed in 5 individuals recruited within 3 weeks of infection. The frequency of CD161++CD8+ T cells was assessed prior to and during antiretroviral therapy (ART) in 14 HIV-positive patients. Results CD161++CD8+ T cells expressed high levels of the HIV co-receptor CCR5, the tissue-homing marker CCR6, and the Mucosal-Associated Invariant T (MAIT) cell TCR Vα7.2. Acute and chronic HIV were associated with lower frequencies of CD161++CD8+ T cells, which did not correlate with CD4 count or HIV viral load. ART was not associated with an increase in CD161++CD8+ T cell frequency. There was a trend towards lower levels of CD161++CD8+ T cells in HIV-negative individuals with active and latent TB. In those co-infected with HIV and TB, CD161++CD8+ T cells were found at low levels similar to those seen in HIV mono-infection. Conclusions The frequencies and phenotype of CD161++CD8+ T cells in this South African cohort are comparable to those published in European and US cohorts. Low-levels of this population were associated with acute and chronic HIV infection. Lower levels of the tissue-trophic CD161++ CD8+ T cell population may contribute to weakened mucosal immune defense, making HIV-infected subjects more susceptible to pulmonary and gastrointestinal infections and detrimentally impacting on host defense against TB.
Collapse
Affiliation(s)
- Emily B. Wong
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ngomu Akeem Akilimali
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | - Pamla Govender
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | - Zuri A. Sullivan
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Cormac Cosgrove
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Mona Pillay
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | - David M. Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - William R. Bishai
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Bruce D. Walker
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Victoria O. Kasprowicz
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, Massachusetts, United States of America
| |
Collapse
|
34
|
Effect of chronic morphine administration on circulating T cell population dynamics in rhesus macaques. J Neuroimmunol 2013; 265:43-50. [PMID: 24090653 DOI: 10.1016/j.jneuroim.2013.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/10/2023]
Abstract
Opioid receptor agonists modulate both innate and adaptive immune responses. In this study, we examined the impact of long-term chronic morphine administration on the circulating T cell population dynamics in rhesus macaques. We found that the numbers of circulating Treg cells, and the functional activity of Th17 cells, were significantly increased with chronic morphine exposure. Our results also show that T cell populations with surface markers characteristic of gut-homing (CD161 and CCR6) and HIV-1 susceptibility (CCR5 and β7 integrin) were increased. These results represent the first detailed report of the impact of chronic morphine administration on circulating T cell dynamics.
Collapse
|
35
|
Abstract
The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in host defense against microbial organisms and in the development of inflammatory diseases. Although IL-17A is the signature cytokine produced by T helper 17 (Th17) cells, IL-17A and other IL-17 family cytokines have multiple sources ranging from immune cells to non-immune cells. The IL-17 family signals via their correspondent receptors and activates downstream pathways that include NFκB, MAPKs and C/EBPs to induce the expression of anti-microbial peptides, cytokines and chemokines. The proximal adaptor Act1 is a common mediator during the signaling of all IL-17 cytokines so far and is thus involved in IL-17 mediated host defense and IL-17-driven autoimmune conditions. This review will give an overview and recent updates on the IL-17 family, the activation and regulation of IL-17 signaling as well as diseases associated with this cytokine family.
Collapse
Affiliation(s)
- Chunfang Gu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
36
|
Hernández-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 2013; 6:900-10. [PMID: 23250275 PMCID: PMC3608691 DOI: 10.1038/mi.2012.128] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/13/2012] [Indexed: 02/04/2023]
Abstract
Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts.
Collapse
Affiliation(s)
| | - Anna R. Huppler
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Alanna C. Peterson
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | | | | | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh,Correspondence: Division of Rheumatology & Clinical Immunology, BST S703, 3500 Terrace St, Pittsburgh PA 15261, USA. 412-383-8903, Fax: 412-383-8864,
| |
Collapse
|
37
|
Rubino SJ, Geddes K, Magalhaes JG, Streutker C, Philpott DJ, Girardin SE. Constitutive induction of intestinal Tc17 cells in the absence of hematopoietic cell-specific MHC class II expression. Eur J Immunol 2013; 43:2896-906. [PMID: 23881368 DOI: 10.1002/eji.201243028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022]
Abstract
The enteric pathogen Citrobacter rodentium induces a mucosal IL-17 response in CD4(+) T helper (Th17) cells that is dependent on the Nod-like receptors Nod1 and Nod2. Here, we sought to determine whether this early Th17 response required antigen presentation by major histocompatibility complex class II (MHCII) for full induction. At early phases of C. rodentium infection, we observed that the intestinal mucosal Th17 response was fully blunted in irradiated mice reconstituted with MHCII-deficient (MHCII(-/-) →WT) hematopoietic cells. Surprisingly, we also observed a substantial increase in the relative frequency of IL-17(+) CD8(+) CD4(-) TCR-β(+) cells (Tc17 cells) and FOXP3(+) CD8(+) CD4(-) TCR-β(+) cells in the lamina propria and intraepithelial lymphocyte compartment of MHCII(-/-) →WT mice compared with that in WT→WT counterparts. Moreover, MHCII(-/-) →WT mice displayed increased susceptibility, increased bacterial translocation to deeper organs, and more severe colonic histopathology after infection with C. rodentium. Finally, a similar phenotype was observed in mice deficient for CIITA, a transcriptional regulator of MHCII expression. Together, these results indicate that MHCII is required to mount early mucosal Th17 responses to an enteric pathogen, and that MHCII regulates the induction of atypical CD8(+) T-cell subsets, such as Tc17 cells and FOXP3(+) CD8(+) cells, in vivo.
Collapse
Affiliation(s)
- Stephen J Rubino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Kim CJ, McKinnon LR, Kovacs C, Kandel G, Huibner S, Chege D, Shahabi K, Benko E, Loutfy M, Ostrowski M, Kaul R. Mucosal Th17 cell function is altered during HIV infection and is an independent predictor of systemic immune activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:2164-73. [PMID: 23894197 DOI: 10.4049/jimmunol.1300829] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mucosal Th17 cells maintain the gut epithelial barrier and prevent invasion by luminal bacteria through a delicate balance of immunosuppressive and proinflammatory functions. HIV infection is characterized by mucosal Th17 depletion, microbial translocation, and immune activation. Therefore, we assessed the function of blood and sigmoid Th17 cells during both early and chronic HIV infection, as well as the impact of short- and long-term antiretroviral therapy. Th17 cells were defined as IL-17a(+) CD4 T cells, and their functional capacity was assessed by the coproduction of the inflammatory cytokines IL-22, TNF-α, and IFN-γ, as well as the immunoregulatory cytokine IL-10. Gut Th17 cells had a much greater capacity to produce proinflammatory cytokines than did those from the blood, but this capacity was dramatically reduced from the earliest stages of HIV infection. Immunoregulatory skewing of mucosal Th17 cell function, characterized by an increased IL-10/TNF-α ratio, was uniquely seen during early HIV infection and was independently associated with reduced systemic immune activation. Antiretroviral therapy rapidly restored mucosal Th17 cell numbers; however, normalization of mucosal Th17 function, microbial translocation, and mucosal/systemic immune activation was much delayed. These findings emphasize that strategies to preserve or to more rapidly restore mucosal Th17 function may have important therapeutic benefit.
Collapse
Affiliation(s)
- Connie J Kim
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brenchley JM. Mucosal immunity in human and simian immunodeficiency lentivirus infections. Mucosal Immunol 2013; 6:657-65. [PMID: 23549448 PMCID: PMC4154146 DOI: 10.1038/mi.2013.15] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overwhelming evidence indicates that distinct pathological phenomenon occurs within the gastrointestinal (GI) tract of progressively simian immunodeficiency virus (SIV)-infected Asian macaques and HIV-infected humans compared with other anatomical sites. Massive loss of GI tract lamina propria CD4 T cells, alteration in the profile of lymphocytic cytokine production, changes in the landscape of GI tract antigen-presenting cells, and variations to the structural barrier of the GI tract are hallmarks of progressive HIV/SIV infections. The pathology within the GI tract results in translocation of microbial products from the lumen of the intestine into peripheral circulation. These translocated microbial products directly stimulate the immune system and exacerbate immune activation and, thus, disease progression. Initiation of combination antiretroviral therapy (cART) does not restore completely the immunological abnormalities within the GI tract. This incomplete restoration within the GI tract may contribute to the increased mortality observed within HIV-infected individuals treated for decades with cART. Novel therapeutic interventions aimed at enhancing GI tract anatomy and physiology may improve the prognosis of HIV-infected individuals.
Collapse
Affiliation(s)
- JM Brenchley
- Program in Tissue Immunity and Repair and Lab of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Abstract
In pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections, the translocation of microbial products from the gastrointestinal (GI) tract to portal and systemic circulation has been proposed as a major driver of the chronic immune activation that is associated with disease progression. Consistently, microbial translocation is not present in nonpathogenic SIV infections of natural host species. In vivo studies demonstrated that HIV/SIV-associated microbial translocation results from a series of immunopathological events occurring at the GI mucosa: (i) early and severe mucosal CD4(+) depletion, (ii) mucosal immune hyperactivation/persistent inflammation; (iii) damage to the integrity of the intestinal epithelium with enterocyte apoptosis and tight junction disruption; and (iv) subverted the gut microbiome, with a predominance of opportunistic bacteria. Direct in situ evidence of microbial translocation has been provided for SIV-infected rhesus macaques showing translocated microbial products in the intestinal lamina propria and distant sites. While the mechanisms by which microbial translocation causes immune activation remain controversial, a key pathogenic event appears to be innate immunity activation via Toll-like receptors and other pathogen recognition receptors. Accumulating clinical observations suggest that microbial translocation might affect HIV disease progression, response to therapy, and non-AIDS comorbidities. Given its detrimental effect on overall immunity, several interventions to prevent/block microbial translocation are currently under investigation as novel therapeutic agents for HIV/AIDS.
Collapse
|
41
|
Manoussaka MS, Berry N, Ferguson D, Stebbings R, Robinson M, Ham C, Page M, Li B, Das AT, Berkhout B, Almond N, Cranage MP. Conditionally-live attenuated SIV upregulates global T effector memory cell frequency under replication permissive conditions. Retrovirology 2013; 10:59. [PMID: 23738926 PMCID: PMC3706341 DOI: 10.1186/1742-4690-10-59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Live attenuated SIV induces potent protection against superinfection with virulent virus; however the mechanism of this vaccine effect is poorly understood. Such knowledge is important for the development of clinically acceptable vaccine modalities against HIV. RESULTS Using a novel, doxycycline dependent, replication-competent live-attenuated SIVmac239Δnef (SIV-rtTAΔnef), we show that under replication-permissive conditions SIV-rtTAΔnef is fully viable. Twelve rhesus macaques were infected with a peak plasma vRNA on average two log10 lower than in 6 macaques infected with unconditionally replication-competent SIVΔnef. Consistent with the attenuated phenotype of the viruses the majority of animals displayed low or undetectable levels of viraemia by 42-84 days after infection. Next, comparison of circulating T cells before and after chronic infection with parental SIVΔnef revealed a profound global polarisation toward CD28-CCR7- T-effector memory 2 (TEM2) cells within CD95+CD4+ and CD95+CD8+ populations. Critically, a similar effect was seen in the CD95+ CD4+ population and to somewhat lesser extent in the CD95+ CD8+ population of SIV-rtTAΔnef chronically infected macaques that were maintained on doxycycline, but was not seen in animals from which doxycycline had been withdrawn. The proportions of gut-homing T-central memory (TCM) and TEM defined by the expression of α4β7 and CD95 and differential expression of CD28 were increased in CD4 and CD8 cells under replication competent conditions and gut-homing CD4 TCM were also significantly increased under non-permissive conditions. TEM2 polarisation was seen in the small intestines of animals under replication permissive conditions but the effect was less pronounced than in the circulation. Intracellular cytokine staining of circulating SIV-specific T cells for IL-2, IFN-γ, TNF-α and IL-17 showed that the extent of polyfunctionality in CD4 and CD8 T cells was associated with replication permissivity; however, signature patterns of cytokine combinations were not distinguishable between groups of macaques. CONCLUSION Taken together our results show that the global T memory cell compartment is profoundly skewed towards a mature effector phenotype by attenuated SIV. Results with the replication-conditional mutant suggest that maintenance of this effect, that may be important in vaccine design, might require persistence of replicating virus.
Collapse
|
42
|
Loss and dysregulation of Th17 cells during HIV infection. Clin Dev Immunol 2013; 2013:852418. [PMID: 23762098 PMCID: PMC3677006 DOI: 10.1155/2013/852418] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/10/2013] [Indexed: 12/17/2022]
Abstract
Bacterial translocation across the damaged mucosal epithelium has emerged as a major paradigm for chronic immune activation observed during HIV infection. T helper 17 (Th17) cells are a unique lineage of T helper cells that are enriched in mucosal tissues and are thought to play a central role in protecting the integrity of the mucosal barrier and maintaining immune homeostasis at mucosal sites. Th17 cells are lost very early during the course of HIV infection, and their loss has been shown to correlate with bacterial translocation. Interestingly, Th17 cells are unable to completely recover from the early destruction even after successful antiretroviral therapy (ART). Here, we review some of the potential mechanisms for the loss and dysregulation of Th17 cells during HIV infection.
Collapse
|
43
|
Relationships between IL-17(+) subsets, Tregs and pDCs that distinguish among SIV infected elite controllers, low, medium and high viral load rhesus macaques. PLoS One 2013; 8:e61264. [PMID: 23620737 PMCID: PMC3631185 DOI: 10.1371/journal.pone.0061264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/07/2013] [Indexed: 01/13/2023] Open
Abstract
Comprehensive studies of the frequencies and absolute numbers of the various cell lineages that synthesize IL-17 in the blood and corresponding gastrointestinal (GI) tissues, their correlation with CD4(+) Tregs, CD8(+) Tregs, total and IFN-α synthesizing plasmacytoid dendritic cells (pDC) relative to plasma viral load in SIV infection has been lacking. The unique availability of SIV infected rhesus macaques (RM) classified as Elite Controllers (EC), and those with Low, Intermediate and High Viral Loads (HVL) provided a unique opportunity to address this issue. Results of these studies showed that EC demonstrated a remarkable ability to reverse changes that are induced acutely by SIV in the various cell lineages. Highlights of the differences between EC and HVL RM within Gastro-intestinal tissues (GIT) was the maintenance and/or increases in the levels of IL-17 synthesizing CD4, CD8, and NK cells and pDCs associated with slight decreases in the levels of CD4(+) Tregs and IFN-α synthesizing pDCs in EC as compared with decreases in the levels of IL-17 synthesizing CD4, CD8 and NK cells associated with increases in pDCs and IFN-α synthesizing pDCs in HVL monkeys. A previously underappreciated role for CD8(+) Tregs was also noted with a moderate increase in ECs but further increases of CD8(+) Tregs with increasing VL in viremic monkeys. Positive correlations between plasma VL and decreases in the levels of Th17, Tc17, NK-17, CD4(+) Tregs and increases in the levels of CD8(+) Tregs, total and IFN-α synthesizing pDCs were also noted. This study also identified 2 additional IL-17(+) subsets in GIT as CD3(-/)CD8(+)/NKG2a(-) and CD3(+)/CD8(+)/NKG2a(+) subsets. Studies also suggest a limited role for IFN-α synthesizing pDCs in chronic immune activation despite persistent up-regulation of ISGs. Finally, elevated persistent innate immune responses appear associated with poor prognosis. These findings provide an initial foundation for markers important to follow for vaccine design.
Collapse
|
44
|
Vaxfectin adjuvant improves antibody responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion proteins. J Virol 2013; 87:6560-8. [PMID: 23552419 DOI: 10.1128/jvi.00635-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA vaccines formulated with the cationic lipid-based adjuvant Vaxfectin induce protective immunity in macaques after intradermal (i.d.) or intramuscular (i.m.) delivery of 0.5 to 1 mg of codon-optimized DNA encoding the hemagglutinin (H) and fusion (F) proteins of measles virus (MeV). To characterize the effect of Vaxfectin at lower doses of H+F DNA, rhesus macaques were vaccinated twice with 20 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.m. or 100 μg of DNA plus phosphate-buffered saline (PBS) i.m. using a needleless Biojector device. The levels of neutralizing (P = 0.036) and binding (P = 0.0001) antibodies were higher after 20 or 100 μg of DNA plus Vaxfectin than after 100 μg of DNA plus PBS. Gamma interferon (IFN-γ)-producing T cells were induced more rapidly than antibody, but were not improved with Vaxfectin. At 18 months after vaccination, monkeys were challenged with wild-type MeV. None developed rash or viremia, but all showed evidence of infection. Antibody levels increased, and IFN-γ- and interleukin-17-producing T cells, including cells specific for the nucleoprotein absent from the vaccine, were induced. At 3 months after challenge, MeV RNA was detected in the leukocytes of two monkeys. The levels of antibody peaked 2 to 4 weeks after challenge and then declined in vaccinated animals reflecting low numbers of bone marrow-resident plasma cells. Therefore, Vaxfectin was dose sparing and substantially improved the antibody response to the H+F DNA vaccine. This immune response led to protection from disease (rash/viremia) but not from infection. Antibody responses after challenge were more transient in vaccinated animals than in an unvaccinated animal.
Collapse
|
45
|
Abstract
CD8 Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are not described. CD3CD8CD161 Tc17 cells and the production of interleukin (IL)-17 were examined in untreated and treated HIV-infected patients, HIV-hepatitis C virus co-infected patients, and healthy controls. Depletion of CD3CD8CD161 Tc17 cells and diminished production of IL-17 in HIV-infected patients were found. The level of Tc17 cells was associated with the CD4 cell count in treated patients.
Collapse
|
46
|
Unexpected heterogeneity of multifunctional T cells in response to superantigen stimulation in humans. Clin Immunol 2012; 146:140-52. [PMID: 23333555 DOI: 10.1016/j.clim.2012.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 10/26/2012] [Accepted: 12/05/2012] [Indexed: 01/30/2023]
Abstract
Toxic shock syndrome (TSS) is a potentially life threatening condition characterized by fever, rash, shock, and multi-organ failure. Staphylococcal enterotoxin B (SEB) is a well characterized superantigen that has been shown to play an important role in TSS. Although the precise mechanisms by which SEB and other superantigens cause TSS are unknown, induction of a pro-inflammatory cytokine cascade appears central to this phenomenon. We show that CD4+ and CD8+ Teffector/memory (T(EM)) and other subsets produce IL-17A following SEB stimulation. We also show that IL-17A is co-produced with other pro-inflammatory cytokines (i.e., IL-2, IFN-γ and TNF-α). These responses are significantly different than those elicited by mitogenic stimulation. Multifunctional IL-17A producing cells possess markers typical of the T(H)17/T(C)17 and T(H)1 subsets, including CCR6, IL-22, and transcription factors retinoic acid receptor-related orphan nuclear receptor (ROR)-γt and T-bet. These results suggest a possible role for IL-17A-producing multifunctional T cells in the pathogenesis of TSS.
Collapse
|
47
|
Abstract
HIV infection is associated with immune dysfunction, perturbation of immune-cell subsets and opportunistic infections. CD161++ CD8+ T cells are a tissue-infiltrating population that produce IL17A, IL22, IFN, and TNFα, cytokines important in mucosal immunity. In adults they dominantly express the semi-invariant TCR Vα7.2, the canonical feature of mucosal associated invariant T (MAIT) cells and have been recently implicated in host defense against pathogens. We analyzed the frequency and function of CD161++ /MAIT cells in peripheral blood and tissue from patients with early stage or chronic-stage HIV infection. We show that the CD161++ /MAIT cell population is significantly decreased in early HIV infection and fails to recover despite otherwise successful treatment. We provide evidence that CD161++ /MAIT cells are not preferentially infected but may be depleted through diverse mechanisms including accumulation in tissues and activation-induced cell death. This loss may impact mucosal defense and could be important in susceptibility to specific opportunistic infections in HIV.
Collapse
|
48
|
Tasca KI, Calvi SA, Souza LDRD. Immunovirological parameters and cytokines in HIV infection. Rev Soc Bras Med Trop 2012; 45:663-9. [DOI: 10.1590/s0037-86822012000600002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 09/19/2012] [Indexed: 11/22/2022] Open
Abstract
Although modern combined antiretroviral therapies (cART) result in lower morbidity and mortality and a visible improvement of clinical and laboratory parameters in HIV-infected, it is known that their long-term use contributes to appearance of the many events unrelated to AIDS such as cardiovascular diseases, cancer and osteoporosis, comorbidities which have been proposed as some of the most important that deprive the majority of infected to present an even better prognosis. This is because even with a decrease in inflammation and immune activation after drug intervention to the patient, these parameters remain higher than those shown by healthy individuals and the imbalance of cytokine profiles also persists. Therefore, evaluations of other biomarkers in clinical practice are needed to complement the exams already carried out routinely and allow more effective monitoring of HIV patients. This review aims to investigate the role of cytokines as potential markers showing studies on their behavior in various stages of HIV infection, with or without cART.
Collapse
|
49
|
Xu H, Wang X, Liu DX, Moroney-Rasmussen T, Lackner AA, Veazey RS. IL-17-producing innate lymphoid cells are restricted to mucosal tissues and are depleted in SIV-infected macaques. Mucosal Immunol 2012; 5:658-69. [PMID: 22669579 PMCID: PMC3702374 DOI: 10.1038/mi.2012.39] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) are an emerging subset of lymphocytes involved in surveillance against virally infected cells. Here, we show CD3(-)CD8(high) lymphocytes in macaque blood include major subsets of ILCs including natural killer (NK) cells expressing CD16, NKp46, and NKG2A, but also populations of ILCs in mucosal tissues having different properties. One ILC subset secreted interleukin (IL)-17 (ILC17), but these were restricted to mucosal tissues. Some mucosal ILC17 cells expressed classical NK-cell markers, but little NKG2A or NKG2D. Some ILC17 cells secreted IL-22 and tumor necrosis factor-α, but few produced interferon (IFN)-γ or contained granzyme B. IL-17 production by ILCs was induced by IL-6, transforming growth factor-β, and IL-23. Further, simian immunodeficiency virus (SIV) infection resulted in a significant loss of ILC17 cells, especially in the jejunum, which persisted throughout SIV infection. These findings indicate that ILC17 cells may be involved in innate mucosal immune responses, and their loss may contribute to loss of intestinal mucosal integrity and disease progression in human immunodeficiency virus (HIV)/SIV infection.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine 18703 Three Rivers Road Covington, LA 70433
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine 18703 Three Rivers Road Covington, LA 70433
| | - David X. Liu
- Tulane National Primate Research Center, Tulane University School of Medicine 18703 Three Rivers Road Covington, LA 70433
| | - Terri Moroney-Rasmussen
- Tulane National Primate Research Center, Tulane University School of Medicine 18703 Three Rivers Road Covington, LA 70433
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Tulane University School of Medicine 18703 Three Rivers Road Covington, LA 70433
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine 18703 Three Rivers Road Covington, LA 70433
| |
Collapse
|
50
|
Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS, Harris LD, Cervasi B, Yokomizo LK, Pan L, Vinton CL, Tabb B, Canary LA, Dang Q, Hirsch VM, Alter G, Belkaid Y, Lifson JD, Silvestri G, Milner JD, Paiardini M, Haddad EK, Brenchley JM. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol 2012; 5:646-57. [PMID: 22643849 PMCID: PMC3443541 DOI: 10.1038/mi.2012.38] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human immunodeficiency virus (HIV) and Simian immunodeficiency virus (SIV) disease progression is associated with multifocal damage to the gastrointestinal tract epithelial barrier that correlates with microbial translocation and persistent pathological immune activation, but the underlying mechanisms remain unclear. Investigating alterations in mucosal immunity during SIV infection, we found that damage to the colonic epithelial barrier was associated with loss of multiple lineages of interleukin (IL)-17-producing lymphocytes, cells that microarray analysis showed expressed genes important for enterocyte homeostasis, including IL-22. IL-22-producing lymphocytes were also lost after SIV infection. Potentially explaining coordinate loss of these distinct populations, we also observed loss of CD103+ dendritic cells (DCs) after SIV infection, which associated with the loss of IL-17- and IL-22-producing lymphocytes. CD103+ DCs expressed genes associated with promotion of IL-17/IL-22+ cells, and coculture of CD103+ DCs and naïve T cells led to increased IL17A and RORc expression in differentiating T cells. These results reveal complex interactions between mucosal immune cell subsets providing potential mechanistic insights into mechanisms of mucosal immune dysregulation during HIV/SIV infection, and offer hints for development of novel therapeutic strategies to address this aspect of AIDS virus pathogenesis.
Collapse
Affiliation(s)
- Nichole R. Klatt
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research,, Frederick, MD, USA
| | - Xiaoyong Sun
- Vaccine and Gene Therapy Institute-Florida, Port Saint Lucie, FL, USA
| | - Alexandra M. Ortiz
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John S. Barber
- Laboratory of Allergic Diseases, NIAD, NIH, Bethesda, MD, USA
| | - Levelle D. Harris
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Barbara Cervasi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Li Pan
- Vaccine and Gene Therapy Institute-Florida, Port Saint Lucie, FL, USA
| | - Carol L. Vinton
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Brian Tabb
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research,, Frederick, MD, USA
| | - Lauren A. Canary
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Que Dang
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Galit Alter
- Ragon Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yasmine Belkaid
- Laboratory of Parasitic Diseases and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research,, Frederick, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute-Florida, Port Saint Lucie, FL, USA
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology and Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|