1
|
Pattanayak N, Das P, Sahoo MR, Panda P, Pradhan M, Pradhan K, Nayak R, Patnaik SK, Tripathy SK. Glucose Sensing Using Pristine and Co-Doped Hematite Fiber-Optic Sensors: Experimental and DFT Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8866-8875. [PMID: 40136220 DOI: 10.1021/acs.langmuir.5c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Glucose monitoring plays a crucial role in managing diabetes, one of the most prevalent diseases worldwide. The development of fast-responsive, cost-effective, and biocompatible glucose sensors is essential for improving patient care. This study investigates the glucose sensing performance of pristine and Co-doped hematite synthesized via the hydrothermal method and integrated into fiber-optic evanescent wave probes. Structural and optical characterizations confirmed the enhanced properties of the Co-doped hematite. The Co-doped sensor exhibited reasonable sensitivity and a significantly improved limit of detection (LoD) of 3.99 mM compared to 6.12 mM for the pristine hematite. Density functional theory calculations further revealed an increase in glucose adsorption energy from -0.24 eV for the pristine surface to -1.28 eV for the Co-doped surface. Charge density difference and projected density of states analyses showed enhanced charge transfer and orbital delocalization upon doping, consistent with the experimentally observed improvement in LoD. These findings position Co-doped hematite as a promising candidate for noninvasive, nonenzymatic glucose detection and underscore the value of integrating experimental and theoretical approaches in biosensing technologies.
Collapse
Affiliation(s)
- Namrata Pattanayak
- Department of Physics, NIST University, Berhampur 761008, India
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Preeti Das
- Centre of Excellence in Nanoscience and Technology for the Development of Sensor, P.G. Department of Physics, Berhampur University, Bhanja Bihar, Odisha 760007, India
| | | | - Padmalochan Panda
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, Lecce, Italy
| | - Monalisa Pradhan
- Department of Physics, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Kalpataru Pradhan
- Theory Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata 700064, India
| | - Reshma Nayak
- Department of Physics, NIST University, Berhampur 761008, India
| | | | - Sukanta Kumar Tripathy
- Centre of Excellence in Nanoscience and Technology for the Development of Sensor, P.G. Department of Physics, Berhampur University, Bhanja Bihar, Odisha 760007, India
| |
Collapse
|
2
|
Hamed MM, Mohammed NA, Badawi KA. A Compact 2-D photonic crystal biomedical sensor for enhanced glucose concentration detection in urine. Sci Rep 2025; 15:4905. [PMID: 39929943 PMCID: PMC11811212 DOI: 10.1038/s41598-025-87547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
This study introduces a 2-D Photonic Crystal (PhC) biosensor designed, simulated, and evaluated for detecting glucose concentrations in urine by utilizing refractive index variations. The sensor demonstrates exceptional performance, achieving a sensitivity of 20,040.30 nm/RIU for glucose levels ranging from 0-15 mg/dl, a quality factor of 10,424.55, and a detection limit as low as 8 × 10-10, surpassing benchmarks reported in the literature. With compact dimensions of 16.8 × 17.6 µm2 and compatibility with modern fabrication techniques, the proposed design is well suited for integration into portable diagnostic devices. A comprehensive comparative analysis underscores its superior sensitivity, ultra-high quality factor, and compact design, establishing it as a major advancement in glucose detection technology.
Collapse
Affiliation(s)
- Mahmoud M Hamed
- Electronics and Communication Engineering Department, Higher Technological Institute, 6Th of October, Giza, Egypt.
| | - Nazmi A Mohammed
- Electronics and Communication Engineering Department, Al-Madinah Higher Institute for Engineering and Technology, Giza, Egypt
- Department of Electronics and Communication Engineering, Giza Engineering Institute, Giza, Egypt
| | - Kareem A Badawi
- Electronics and Communication Engineering Department, Higher Technological Institute, 6Th of October, Giza, Egypt
| |
Collapse
|
3
|
Robinson KJ, Voelcker NH, Thissen H. Clinical challenges and opportunities related to the biological responses experienced by indwelling and implantable bioelectronic medical devices. Acta Biomater 2025; 193:49-64. [PMID: 39675496 DOI: 10.1016/j.actbio.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Implantable electrodes have been utilized for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. While the underlying science related to the application of electrodes is a mature field, preclinical and clinical studies have demonstrated that there are still significant challenges in vivo associated with a lack of control over tissue-material interfacial interactions, especially over longer time frames. Herein we discuss the current challenges and opportunities for implantable electrodes and the associated bioelectronic interfaces across the clinical landscape with a focus on emerging technologies and the obstacles of biofouling, microbial colonization, and the foreign body response. Overcoming these challenges is predicted to open the door for a new generation of implantable medical devices and significant associated clinical impact. STATEMENT OF SIGNIFICANCE: Implantable electrodes have been utilised for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. Next-generation bioelectronic implantable medical devices promise an explosion of new applications that have until this point in time been impossible to achieve. However, there are several persistent biological challenges hindering the realisation of these new applications. We present a clinical perspective on how these biological challenges have shaped the device market and clinical trial landscape. Specifically, we present statistical breakdowns of current device applications and discuss biofouling, the foreign body response, and microbial colonisation as the main factors that need to be addressed before a new generation of devices can be explored.
Collapse
Affiliation(s)
- Kye J Robinson
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
4
|
俞 志, 孙 宇, 黄 志, 李 崭, 龙 建, 朱 志. [Research progress on automated insulin delivery system in the field of diabetes management]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:1279-1285. [PMID: 40000220 PMCID: PMC11955368 DOI: 10.7507/1001-5515.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/09/2024] [Indexed: 02/27/2025]
Abstract
Diabetes and its complications pose a serious threat to human life and health. It has become a public health problem of wide concern worldwide. Currently, diabetes is mainly treated with insulin injection in clinic. However, manual insulin injection still has many shortcomings. In recent years, with the deepening of research, it has been found that an automated insulin delivery system (AID), which combines a continuous glucose monitoring device with an insulin pump, can significantly improve the effectiveness of diabetes treatment and reduce the incidence of complications in patients. This paper firstly introduces the composition of the AID system and its working principle, and then details the development history and current status of the related technologies from the aspects of continuous glucose monitoring technology, insulin pumps and the development of closed-loop control algorithms, etc. Finally, this paper looks forward to the application prospect and future development of AID system in the field of diabetes treatment, providing theoretical reference for further research.
Collapse
Affiliation(s)
- 志超 俞
- 上海理工大学 健康科学与工程学院(上海 200093)School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 宇帆 孙
- 上海理工大学 健康科学与工程学院(上海 200093)School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 志健 黄
- 上海理工大学 健康科学与工程学院(上海 200093)School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 崭虹 李
- 上海理工大学 健康科学与工程学院(上海 200093)School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 建军 龙
- 上海理工大学 健康科学与工程学院(上海 200093)School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 志刚 朱
- 上海理工大学 健康科学与工程学院(上海 200093)School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
5
|
Fogliazza F, Sambati V, Iovane B, Lazzeroni P, Street ME, Esposito S. Telemedicine for Managing Type 1 Diabetes in Children and Adolescents Before and After the COVID-19 Pandemic. J Clin Med 2024; 13:7359. [PMID: 39685817 DOI: 10.3390/jcm13237359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The COVID-19 pandemic has catalyzed the rapid expansion of telemedicine for managing chronic conditions such as type 1 diabetes (T1D) in children and adolescents. This narrative review aims to explore the role of telemedicine in pediatric T1D management by comparing its use before and after the pandemic. We conducted a comprehensive literature review covering studies published between 2000 and 2024, focusing on telemedicine applications in pediatric T1D care. The review includes clinical trials, systematic reviews, and observational studies examining telemedicine's impact on glycemic control, patient satisfaction, and healthcare delivery. Results reveal that telemedicine has enhanced access to care, improved glycated hemoglobin (HbA1c) levels, and reduced diabetic ketoacidosis and hypoglycemic events. Patients and caregivers expressed high satisfaction, especially when using continuous glucose monitoring and insulin pump technologies integrated with telemedicine platforms. However, challenges such as digital literacy gaps, variability in healthcare provider training, and logistical issues like reimbursement policies persist. The pandemic highlighted the potential of telemedicine to supplement traditional in-person care, showing promise in enhancing patient outcomes and reducing healthcare burdens. Further research is needed to optimize telemedicine models for T1D, addressing barriers to implementation and exploring its long-term cost-effectiveness. This review underscores telemedicine's evolving role as a complementary approach in managing pediatric T1D, advocating for the development of standardized care protocols to fully integrate digital health solutions into routine clinical practice.
Collapse
Affiliation(s)
- Federica Fogliazza
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Vanessa Sambati
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Brunella Iovane
- Unit of General Pediatrics and Pediatric Emergency, University Hospital of Parma, 43126 Parma, Italy
| | - Pietro Lazzeroni
- Unit of General Pediatrics and Pediatric Emergency, University Hospital of Parma, 43126 Parma, Italy
| | - Maria Elisabeth Street
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
6
|
Manohar D, Babu RS, Vijaya B, Nallakumar S, Gobi R, Anand S, Nishanth DS, Anupama A, Rani MU. A review on exploring the potential of PVA and chitosan in biomedical applications: A focus on tissue engineering, drug delivery and biomedical sensors. Int J Biol Macromol 2024; 283:137318. [PMID: 39549801 DOI: 10.1016/j.ijbiomac.2024.137318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Polymers have been integral to the advancement of biomedicine, owing to their exceptional versatility and functionality. Among these, polyvinyl alcohol (PVA) and chitosan both natural polymers stand out for their remarkable biocompatibility, biodegradability, and unique properties. This review article provides a comprehensive examination of the diverse applications of PVA and chitosan in three pivotal areas: tissue engineering, drug delivery, and biosensors. In tissue engineering, the discussion centres on how PVA and chitosan are engineered into scaffolds that not only support cell growth and differentiation but also promote tissue regeneration by closely mimicking the extracellular matrix. These scaffolds offer the necessary mechanical strength and adaptability for various biomedical applications. For drug delivery, the article delves into the development of sophisticated controlled release systems and targeted drug carriers, highlighting the polymers' customizable properties and their mucoadhesive nature, which make them highly effective across multiple drug delivery methods. Furthermore, the potential of PVA and chitosan in biosensor technology is explored, particularly their ability to interact with biomolecules and their intrinsic conductivity attributes that are essential for creating sensitive, reliable, and biocompatible sensors for medical diagnostics. By synthesizing recent research findings and suggesting future research directions, this review underscores the versatility and critical role of PVA and chitosan in pushing the boundaries of biomedical innovation. It offers valuable insights for researchers and scientists dedicated to advancing healthcare through the application of these natural polymers.
Collapse
Affiliation(s)
- D Manohar
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Ravi Shanker Babu
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - B Vijaya
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Santhosh Nallakumar
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Ravichandhran Gobi
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - S Anand
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - D S Nishanth
- Department of Biotechnology, School of Bio Science and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Arpita Anupama
- Department of Biotechnology, School of Bio Science and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - M Usha Rani
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India.
| |
Collapse
|
7
|
Wang B, Eden A, Chen Y, Kim H, Queenan BN, Bazan GC, Pennathur S. Auto recalibration based on dual-mode sensing for robust optical continuous glucose monitoring. SENSORS AND ACTUATORS B: CHEMICAL 2024; 418:136277. [DOI: 10.1016/j.snb.2024.136277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Visser MM, Vangoitsenhoven R, Gillard P, Mathieu C. Review Article - Diabetes Technology in the Hospital: An Update. Curr Diab Rep 2024; 24:173-182. [PMID: 38842632 DOI: 10.1007/s11892-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW There have been many developments in diabetes technology in recent years, with continuous glucose monitoring (CGM), insulin pump therapy (CSII) and automated insulin delivery (AID) becoming progressively accepted in outpatient diabetes care. However, the use of such advanced diabetes technology in the inpatient setting is still limited for several reasons, including logistical challenges and staff training needs. On the other hand, hospital settings with altered diet and stress-induced hyperglycemia often pose challenges to tight glycemic control using conventional treatment tools. Integrating smarter glucose monitoring and insulin delivery devices into the increasingly technical hospital environment could reduce diabetes-related morbidity and mortality. This narrative review describes the most recent literature on the use of diabetes technology in the hospital and suggests avenues for further research. RECENT FINDINGS Advanced diabetes technology has the potential to improve glycemic control in hospitalized people with and without diabetes, and could add particular value in certain conditions, such as nutrition therapy or perioperative management. Taken together, CGM allows for more accurate and patient-friendly follow-up and ad hoc titration of therapy. AID may also provide benefits, including improved glycemic control and reduced nursing workload. Before advanced diabetes technology can be used on a large scale in the hospital, further research is needed on efficacy, accuracy and safety, while implementation factors such as cost and staff training must also be overcome.
Collapse
Affiliation(s)
| | | | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, Louvain, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Louvain, Belgium.
| |
Collapse
|
9
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
10
|
Presseller EK, Parker MN, Zhang F, Manasse S, Juarascio AS. Continuous glucose monitoring as an objective measure of meal consumption in individuals with binge-spectrum eating disorders: A proof-of-concept study. EUROPEAN EATING DISORDERS REVIEW 2024; 32:828-837. [PMID: 38568882 PMCID: PMC11282580 DOI: 10.1002/erv.3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Going extended periods of time without eating increases risk for binge eating and is a primary target of leading interventions for binge-spectrum eating disorders (B-EDs). However, existing treatments for B-EDs yield insufficient improvements in regular eating and subsequently, binge eating. These unsatisfactory clinical outcomes may result from limitations in assessment and promotion of regular eating in therapy. Detecting the absence of eating using passive sensing may improve clinical outcomes by facilitating more accurate monitoring of eating behaviours and powering just-in-time adaptive interventions. We developed an algorithm for detecting meal consumption (and extended periods without eating) using continuous glucose monitor (CGM) data and machine learning. METHOD Adults with B-EDs (N = 22) wore CGMs and reported eating episodes on self-monitoring surveys for 2 weeks. Random forest models were run on CGM data to distinguish between eating and non-eating episodes. RESULTS The optimal model distinguished eating and non-eating episodes with high accuracy (0.82), sensitivity (0.71), and specificity (0.94). CONCLUSIONS These findings suggest that meal consumption and extended periods without eating can be detected from CGM data with high accuracy among individuals with B-EDs, which may improve clinical efforts to target dietary restriction and improve the field's understanding of its antecedents and consequences.
Collapse
Affiliation(s)
- Emily K. Presseller
- Center for Weight, Eating, and Lifestyle Sciences (WELL Center), Drexel University, Philadelphia, Pennsylvania, USA
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Megan N. Parker
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Fengqing Zhang
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Stephanie Manasse
- Center for Weight, Eating, and Lifestyle Sciences (WELL Center), Drexel University, Philadelphia, Pennsylvania, USA
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Adrienne S. Juarascio
- Center for Weight, Eating, and Lifestyle Sciences (WELL Center), Drexel University, Philadelphia, Pennsylvania, USA
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Kurt I, Krauhausen I, Spolaor S, van de Burgt Y. Predicting Blood Glucose Levels with Organic Neuromorphic Micro-Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308261. [PMID: 38682442 PMCID: PMC11251550 DOI: 10.1002/advs.202308261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Indexed: 05/01/2024]
Abstract
Accurate glucose prediction is vital for diabetes management. Artificial intelligence and artificial neural networks (ANNs) are showing promising results for reliable glucose predictions, offering timely warnings for glucose fluctuations. The translation of these software-based ANNs into dedicated computing hardware opens a route toward automated insulin delivery systems ultimately enhancing the quality of life for diabetic patients. ANNs are transforming this field, potentially leading to implantable smart prediction devices and ultimately to a fully artificial pancreas. However, this transition presents several challenges, including the need for specialized, compact, lightweight, and low-power hardware. Organic polymer-based electronics are a promising solution as they have the ability to implement the behavior of neural networks, operate at low voltage, and possess key attributes like flexibility, stretchability, and biocompatibility. Here, the study focuses on implementing software-based neural networks for glucose prediction into hardware systems. How to minimize network requirements, downscale the architecture, and integrate the neural network with electrochemical neuromorphic organic devices, meeting the strict demands of smart implants for in-body computation of glucose prediction is investigated.
Collapse
Affiliation(s)
- Ibrahim Kurt
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Imke Krauhausen
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
- Max Planck Institute for Polymer Research55128MainzGermany
| | - Simone Spolaor
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Yoeri van de Burgt
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| |
Collapse
|
12
|
Luo F, Li Z, Shi Y, Sun W, Wang Y, Sun J, Fan Z, Chang Y, Wang Z, Han Y, Zhu Z, Marty JL. Integration of Hollow Microneedle Arrays with Jellyfish-Shaped Electrochemical Sensor for the Detection of Biomarkers in Interstitial Fluid. SENSORS (BASEL, SWITZERLAND) 2024; 24:3729. [PMID: 38931517 PMCID: PMC11207310 DOI: 10.3390/s24123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
This study integrates hollow microneedle arrays (HMNA) with a novel jellyfish-shaped electrochemical sensor for the detection of key biomarkers, including uric acid (UA), glucose, and pH, in artificial interstitial fluid. The jellyfish-shaped sensor displayed linear responses in detecting UA and glucose via differential pulse voltammetry (DPV) and chronoamperometry, respectively. Notably, the open circuit potential (OCP) of the system showed a linear variation with pH changes, validating its pH-sensing capability. The sensor system demonstrates exceptional electrochemical responsiveness within the physiological concentration ranges of these biomarkers in simulated epidermis sensing applications. The detection linear ranges of UA, glucose, and pH were 0~0.8 mM, 0~7 mM, and 4.0~8.0, respectively. These findings highlight the potential of the HMNA-integrated jellyfish-shaped sensors in real-world epidermal applications for comprehensive disease diagnosis and health monitoring.
Collapse
Affiliation(s)
- Fangfang Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yiping Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Wen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yuwei Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Jianchao Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zheyuan Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yanyi Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Jean-Louis Marty
- UFR Sciences, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
| |
Collapse
|
13
|
Naresh M, Nagaraju VS, Kollem S, Kumar J, Peddakrishna S. Non-invasive glucose prediction and classification using NIR technology with machine learning. Heliyon 2024; 10:e28720. [PMID: 38601525 PMCID: PMC11004754 DOI: 10.1016/j.heliyon.2024.e28720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
In this paper, a dual wavelength short near-infrared system is described for the detection of glucose levels. The system aims to improve the accuracy of blood glucose detection in a cost-effective and non-invasive way. The accuracy of the method is evaluated using real-time samples collected with the reference finger prick glucose device. A feed forward neural network (FFNN) regression method is employed to predict glucose levels based on the input data obtained from NIR technology. The system calculates glucose evaluation metrics and performs Surveillance error grid (SEG) analysis. The coefficient of determination R 2 and mean absolute error are observed 0.99 and 2.49 mg/dl, respectively. Additionally, the system determines the root mean square error (RMSE) as 3.02 mg/dl. It also shows that the mean absolute percentage error (MAPE) is 1.94% and mean squared error (MSE) is 9.16 ( m g / d l ) 2 for FFNN. The SEG analysis shows that the glucose values measured by the system fall within the clinically acceptable range when compared to the reference method. Finally, the system uses the multi-class classification method of the multilayer perceptron (MLP) and K-nearest neighbors (KNN) classifier to classify glucose levels with an accuracy of 99%.
Collapse
Affiliation(s)
- M. Naresh
- School of Electronics Engineering, VIT-AP University, Amaravti, Guntur, 522241, Andhra Pradesh, India
| | - V. Siva Nagaraju
- Department of ECE, Institute of Aeronautical Engineering, Dundigal, Hyderabad, 500043, Telangana, India
| | - Sreedhar Kollem
- Department of ECE, School of Engineering, SR University, Warangal, 506371, Telangana, India
| | - Jayendra Kumar
- School of Electronics Engineering, VIT-AP University, Amaravti, Guntur, 522241, Andhra Pradesh, India
| | - Samineni Peddakrishna
- School of Electronics Engineering, VIT-AP University, Amaravti, Guntur, 522241, Andhra Pradesh, India
| |
Collapse
|
14
|
Shabanur Matada MS, Kuppuswamy GP, Sasi S, Velappa Jayaraman S, Nutalapati V, Senthil Kumar S, Sivalingam Y. Pyrene Derivative Incorporated Ni MOF as an Enzyme Mimic for Noninvasive Salivary Glucose Detection Toward Diagnosis of Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17219-17231. [PMID: 38561895 DOI: 10.1021/acsami.3c19431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we demonstrate the detection of glucose in a noninvasive and nonenzymatic manner by utilizing an extended gate field-effect transistor (EGFET) based on the organic molecule pyrene phosphonic acid (PyP4OH8) incorporated nickel metal-organic framework (NiOM-MOF). The prepared electrode responds selectively to glucose instead of sucrose, fructose, maltose, ascorbic acid, and uric acid in a 1× phosphate buffer saline solution. Also, utilizing the scanning Kelvin probe system, the sensing electrode's work function (Φ) is measured to validate the glucose-sensing mechanism. The sensitivity, detection range, response time, limit of detection, and limit of quantification of the electrode are determined to be 24.5 μA mM-1 cm-2, 20 μM to 10 mM, less than 5 s, 2.73 μM, and 8.27 μM, respectively. Most interestingly, the developed electrode follows the Michaelis-Menten kinetics, and the calculated rate constant (km) 0.07 mM indicates a higher affinity of NiOM-MOF toward glucose. The real-time analysis has revealed that the prepared electrode is sensitive to detect glucose in real human saliva, and it can be an alternative device for the noninvasive detection of glucose. Overall, the outcomes of the EGFET studies demonstrate that the prepared electrodes are well-suited for expeditious detection of glucose levels in saliva.
Collapse
Affiliation(s)
- Mallikarjuna Swamy Shabanur Matada
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
| | - Guru Prasad Kuppuswamy
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
| | - Sheethal Sasi
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
| | - Surya Velappa Jayaraman
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai Miyagi 980-8579, Japan
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, Karaikudi, Tamil Nadu 630006, India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
- Sensors Lab, Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Kang EYC, Shen CR, Huang XC, Kang CY, Lin TY, Hong WH, Yang LY, Wu WC, Hwang YS. Noncontact optical device for measuring blood glucose in aqueous humor: a pilot clinical study investigating correlation with blood glucose levels. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:047001. [PMID: 38638839 PMCID: PMC11025639 DOI: 10.1117/1.jbo.29.4.047001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Significance Monitoring blood glucose levels is crucial for individuals with diabetes. Noninvasive methods for measuring serum glucose levels have been explored to aid in blood glucose control for diabetes management. Aim We introduced a noncontact optical glucometer (NCGM) for measuring glucose levels in the aqueous humor of the human eye. We also investigated the correlation between glucose levels in the NCGM and the aqueous humor, blood samples, and self-monitoring blood glucose devices. Approach The optical system used in this study measured both the near-infrared absorption and polarized rotatory distribution of glucose molecules in the human aqueous humor. This prospective study's outcomes were eye aqueous glucose level, preoperative blood glucose level, intraoperative blood glucose level, and NCGM reading of patients in a single center in Taiwan. Results The NCGM's measurements showed a strong correlation with blood glucose levels (intra-class correlation [ICC]: 0.95 to 0.98) and aqueous humor glucose levels (ICC: 0.76), indicating its ability to noninvasively measure blood glucose levels in human subjects. Conclusions This NCGM may offer a convenient, pain-free, and rapid tool for measuring blood glucose levels in diabetic patients. The device could represent a significant advancement in noncontact hybrid optical glucose measurement systems.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Chang Gung Memorial Hospital, Linkou Medical Center, Department of Ophthalmology, Taoyuan, Taiwan
- Chang Gung University, College of Medicine, School of Medicine, Taoyuan, Taiwan
- Chang Gung University, Graduate Institute of Clinical Medical Sciences, Taoyuan, Taiwan
- Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Department of Ophthalmology, New York, United States
| | - Chia-Rui Shen
- Chang Gung University, College of Medicine, Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan
| | - Xin-Cheng Huang
- Chang Gung University, College of Medicine, School of Medicine, Taoyuan, Taiwan
| | - Chun-Ya Kang
- Taipei Medical University Hospital, Department of Education, Taipei, Taiwan
| | - Tzu-Yi Lin
- Chang Gung Memorial Hospital, Linkou Medical Center, Department of Ophthalmology, Taoyuan, Taiwan
- Chang Gung University, College of Medicine, School of Medicine, Taoyuan, Taiwan
| | - Wei-Hsin Hong
- Chang Gung University, College of Medicine, Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan
| | - Lan-Yan Yang
- Chang Gung Memorial Hospital, Clinical Trial Center, Taoyuan, Taiwan
| | - Wei-Chi Wu
- Chang Gung Memorial Hospital, Linkou Medical Center, Department of Ophthalmology, Taoyuan, Taiwan
- Chang Gung University, College of Medicine, School of Medicine, Taoyuan, Taiwan
| | - Yih-Shiou Hwang
- Chang Gung Memorial Hospital, Linkou Medical Center, Department of Ophthalmology, Taoyuan, Taiwan
- Chang Gung University, College of Medicine, School of Medicine, Taoyuan, Taiwan
- Jen-Ai Hospital Dali Branch, Department of Ophthalmology, Taichung, Taiwan
- Xiamen Chang Gung Memorial Hospital, Department of Ophthalmology, Xiamen, China
| |
Collapse
|
16
|
Guan X, Chen D, Xu Y. Clinical practice guidelines for nutritional assessment and monitoring of adult ICU patients in China. JOURNAL OF INTENSIVE MEDICINE 2024; 4:137-159. [PMID: 38681796 PMCID: PMC11043647 DOI: 10.1016/j.jointm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 05/01/2024]
Abstract
The Chinese Society of Critical Care Medicine (CSCCM) has developed clinical practice guidelines for nutrition assessment and monitoring for patients in adult intensive care units (ICUs) in China. This guideline focuses on nutrition evaluation and metabolic monitoring to achieve optimal and personalized nutrition therapy for critically ill patients. This guideline was developed by experts in critical care medicine and evidence-based medicine methodology and was developed after a thorough review of the system and a summary of relevant trials or studies published from 2000 to July 2023. A total of 18 recommendations were formed and consensus was reached through discussions and reviews by expert groups in critical care medicine, parenteral and enteral nutrition, and surgery. The recommendations are based on currently available evidence and cover several key fields, including screening and assessment, evaluation and assessment of enteral feeding intolerance, metabolic and nutritional measurement and monitoring during nutrition therapy, and organ function evaluation related to nutrition supply. Each question was analyzed according to the Population, Intervention, Comparison, and Outcome (PICO) principle. In addition, interpretations were provided for four questions that did not reach a consensus but may have potential clinical and research value. The plan is to update this nutrition assessment and monitoring guideline using the international guideline update method within 3-5 years.
Collapse
Affiliation(s)
- Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xu
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
17
|
Mazzotta FA, Lucaccini Paoli L, Rizzi A, Tartaglione L, Leo ML, Cristallo F, Popolla V, DI Leo M, Pontecorvi A, Pitocco D. The development and evolution of insulin pumps: from early beginnings to future prospects. Minerva Endocrinol (Torino) 2024; 49:85-99. [PMID: 37227318 DOI: 10.23736/s2724-6507.23.04030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Diabetes technology has proliferated extensively over the past few decades with vast ameliorations in glucose monitoring and in insulin delivery systems. From a treatment based on daily insulin injections, we have moved to increasingly advanced technologies. Despite such advancements which have allowed better glycemic control, decreased diabetes-related complications, and improved the quality of life among diabetic patients, it has left many individuals unsatisfied with the current rate of commercial artificial pancreas development, stemming the need for further research into novel technologies. Accordingly, the Juvenile Diabetes Research Foundation has marked three generations for the development of an artificial pancreas comprising historical landmarks and future prospects which aim to produce an advanced technological system that attempts to mimic the endogenous pancreas, eliminating the need for user input. This review presents a synopsis of the development and evolution of insulin pumps, starting with the earliest technologies available such as continuous subcutaneous insulin infusion and continuous glucose monitoring as separate components, to currently available integrated advanced closed-loop hybrid systems and possible future technologies. The aim of the review is to provide insight of the advantages and limitations of past and currently available insulin pumps with the hope of driving research into novel technologies that attempt to mimic endogenous pancreatic function as closely as possible.
Collapse
Affiliation(s)
- Francesco A Mazzotta
- Department of Endocrinology, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Lorenzo Lucaccini Paoli
- Department of Endocrinology, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
| | - Alessandro Rizzi
- Diabetes Care Unit, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Maria L Leo
- Department of Endocrinology, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Federica Cristallo
- Diabetes Care Unit, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Valentina Popolla
- Diabetes Care Unit, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Mauro DI Leo
- Diabetes Care Unit, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Endocrinology, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Catholic University of the Sacred Heart, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| |
Collapse
|
18
|
Naseska M, Globočnik A, Davies S, Yetisen AK, Humar M. Non-contact monitoring of glucose concentration and pH by integration of wearable and implantable hydrogel sensors with optical coherence tomography. OPTICS EXPRESS 2024; 32:92-103. [PMID: 38175065 DOI: 10.1364/oe.506780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique with large penetration depth into the tissue, but limited chemical specificity. By incorporating functional co-monomers, hydrogels can be designed to respond to specific molecules and undergo reversible volume changes. In this study, we present implantable and wearable biocompatible hydrogel sensors combined with OCT to monitor their thickness change as a tool for continuous and real-time monitoring of glucose concentration and pH. The results demonstrate the potential of combining hydrogel biosensors with OCT for non-contact continuous in-vivo monitoring of physiological parameters.
Collapse
|
19
|
El-Moghazy AY, Amaly N, Nitin N, Sun G. A label-free electrochemical immunosensor based on decorated cellulose nanofibrous membrane for point-of-care diagnosis of amanitin poisoning via human urine. LAB ON A CHIP 2023; 23:5009-5017. [PMID: 37905598 PMCID: PMC11042792 DOI: 10.1039/d3lc00508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
α-Amanitin (AMN) is one of the deadliest toxins from mushrooms, present in the deadly mushroom species Amanita phalloides. It is a bicyclic octapeptide and represents up to 40% of the amatoxins in mushrooms, damaging the liver and kidneys. Current methods of detecting amatoxins are time-consuming and require the use of expensive equipment. A novel label-free electrochemical immunosensor was successfully developed for rapid detection of α-amanitin, which was fabricated by immobilization of anti-α-amanitin antibodies onto a functionalized cellulose nanofibrous membrane-modified carbon screen-printed electrode. An oxidation peak of the captured amanitin on the tethered antibodies was observed at 0.45 V. The performance of the nanofibrous membrane on the electrode and necessary fabrication steps were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Due to its unique structural features and properties such as high specific surface area and microporous structure, the nanofibrous membrane as an immunosensor matrix for antibody tethering improved the electrochemical performance of the immunosensor by more than 3 times compared with cast membranes. Under the optimal conditions, the assembled immunosensor exhibited high sensitivity toward α-amanitin detection in the range of 0.009-2 ng mL-1 with a limit of detection of 8.3 pg mL-1. The results clearly indicate that the fabricated nanofiber-based-immunosensor is suitable for point-of-care detection of lethal α-amanitin in human urine without any pretreatment within 30 min.
Collapse
Affiliation(s)
- Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
- Food Science and Technology, University of California, Davis, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Di Filippo D, Sunstrum FN, Khan JU, Welsh AW. Non-Invasive Glucose Sensing Technologies and Products: A Comprehensive Review for Researchers and Clinicians. SENSORS (BASEL, SWITZERLAND) 2023; 23:9130. [PMID: 38005523 PMCID: PMC10674292 DOI: 10.3390/s23229130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Diabetes Mellitus incidence and its negative outcomes have dramatically increased worldwide and are expected to further increase in the future due to a combination of environmental and social factors. Several methods of measuring glucose concentration in various body compartments have been described in the literature over the years. Continuous advances in technology open the road to novel measuring methods and innovative measurement sites. The aim of this comprehensive review is to report all the methods and products for non-invasive glucose measurement described in the literature over the past five years that have been tested on both human subjects/samples and tissue models. A literature review was performed in the MDPI database, with 243 articles reviewed and 124 included in a narrative summary. Different comparisons of techniques focused on the mechanism of action, measurement site, and machine learning application, outlining the main advantages and disadvantages described/expected so far. This review represents a comprehensive guide for clinicians and industrial designers to sum the most recent results in non-invasive glucose sensing techniques' research and production to aid the progress in this promising field.
Collapse
Affiliation(s)
- Daria Di Filippo
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Frédérique N. Sunstrum
- Product Design, School of Design, Faculty of Design, Architecture and Built Environment, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jawairia U. Khan
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Alec W. Welsh
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- Department of Maternal-Fetal Medicine, Royal Hospital for Women, Randwick, NSW 2031, Australia
| |
Collapse
|
21
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
22
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
23
|
Vettoretti M, Drecogna M, Del Favero S, Facchinetti A, Sparacino G. A Markov Model of Gap Occurrence in Continuous Glucose Monitoring Data for Realistic in Silico Clinical Trials. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107700. [PMID: 37437469 DOI: 10.1016/j.cmpb.2023.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Continuous glucose monitoring (CGM) sensors measure interstitial glucose concentration every 1-5 min for days or weeks. New CGM-based diabetes therapies are often tested in in silico clinical trials (ISCTs) using diabetes simulators. Accurate models of CGM sensor inaccuracies and failures could help improve the realism of ISCTs. However, the modeling of CGM failures has not yet been fully addressed in the literature. This work aims to develop a mathematical model of CGM gaps, i.e., occasional portions of missing data generated by temporary sensor errors (e.g., excessive noise or artifacts). METHODS Two datasets containing CGM traces collected in 167 adults and 205 children, respectively, using the Dexcom G6 sensor (Dexcom Inc., San Diego, CA) were used. Four Markov models, of increasing complexity, were designed to describe three main characteristics: number of gaps for each sensor, gap distribution in the monitoring days, and gap duration. Each model was identified on a portion of each dataset (training set). The remaining portion of each dataset (real test set) was used to evaluate model performance through a Monte Carlo simulation approach. Each model was used to generate 100 simulated test sets with the same size as the real test set. The distributions of gap characteristics on the simulated test sets were compared with those observed on the real test set, using the two-sample Kolmogorov-Smirnov test and the Jensen-Shannon divergence. RESULTS A six-state Markov model, having two states to describe normal sensor operation and four states to describe gap occurrence, achieved the best results. For this model, the Kolmogorov-Smirnov test found no significant differences between the distribution of simulated and real gap characteristics. Moreover, this model obtained significantly lower Jensen-Shannon divergence values than the other models. CONCLUSIONS A Markov model describing CGM gaps was developed and validated on two real datasets. The model describes well the number of gaps for each sensor, the gap distribution over monitoring days, and the gap durations. Such a model can be integrated into existing diabetes simulators to realistically simulate CGM gaps in ISCTs and thus enable the development of more effective and robust diabetes management strategies.
Collapse
Affiliation(s)
- Martina Vettoretti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy.
| | - Martina Drecogna
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| |
Collapse
|
24
|
Javanbakht S, Darvishi S, Dorchei F, Hosseini-Ghalehno M, Dehghani M, Pooresmaeil M, Suzuki Y, Ul Ain Q, Ruiz Rubio L, Shaabani A, Hayashita T, Namazi H, Heydari A. Cyclodextrin Host-Guest Recognition in Glucose-Monitoring Sensors. ACS OMEGA 2023; 8:33202-33228. [PMID: 37744789 PMCID: PMC10515351 DOI: 10.1021/acsomega.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge. Addressing these challenges is critical to improving the clinical utility of GM technologies in diabetes management. In this concept, cyclodextrins (CDs) can be instrumental in the development of GM systems due to their high supramolecular recognition capabilities based on the host-guest interaction. The introduction of CDs into GM systems not only impacts the sensitivity, selectivity, and detection limit of the monitoring process but also improves biocompatibility and stability. These findings motivated the current review to provide a comprehensive summary of CD-based blood glucose sensors and their chemistry of glucose detection, efficiency, and accuracy. We categorize CD-based sensors into four groups based on their modification strategies, including CD-modified boronic acid, CD-modified mediators, CD-modified nanoparticles, and CD-modified functionalized polymers. These findings shed light on the potential of CD-based sensors as a promising tool for continuous GM in diabetes mellitus management.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Sima Darvishi
- Faculty
of Chemistry, Khajeh Nasir Toosi University, Tehran, Iran
| | - Faeze Dorchei
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | | | - Marjan Dehghani
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Malihe Pooresmaeil
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Qurat Ul Ain
- Department
of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad H-12, Pakistan
| | - Leire Ruiz Rubio
- Macromolecular
Chemistry Group (LQM), Department of Physical Chemistry, Faculty of
Science and Technology, University of Basque
Country (UPV/EHU), Leioa 48940, Spain
- Basque
Centre for Materials, Applications and Nanostructures
(BCMaterials), UPV/EHU
Science Park, Leioa 48940, Spain
| | - Ahmad Shaabani
- Faculty
of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hassan Namazi
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
- Research
Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Abolfazl Heydari
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešt’any, Slovakia
| |
Collapse
|
25
|
Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, Radulian G, Lupuliasa D. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life-A Narrative Review. Life (Basel) 2023; 13:1663. [PMID: 37629520 PMCID: PMC10456000 DOI: 10.3390/life13081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Type 1 diabetes mellitus is a chronic autoimmune disease that affects millions of people and generates high healthcare costs due to frequent complications when inappropriately managed. Our paper aimed to review the latest technologies used in T1DM management for better glycemic control and their impact on daily life for people with diabetes. Continuous glucose monitoring systems provide a better understanding of daily glycemic variations for children and adults and can be easily used. These systems diminish diabetes distress and improve diabetes control by decreasing hypoglycemia. Continuous subcutaneous insulin infusions have proven their benefits in selected patients. There is a tendency to use more complex systems, such as hybrid closed-loop systems that can modulate insulin infusion based on glycemic readings and artificial intelligence-based algorithms. It can help people manage the burdens associated with T1DM management, such as fear of hypoglycemia, exercising, and long-term complications. The future is promising and aims to develop more complex ways of automated control of glycemic levels to diminish the distress of individuals living with diabetes.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Adina Magdalena Musuc
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Ancuța Cătălina Fița
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Emilia Rusu
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, N. Malaxa Clinical Hospital, 12 Vergului Street, 022441 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| |
Collapse
|
26
|
Juneja D, Deepak D, Nasa P. What, why and how to monitor blood glucose in critically ill patients. World J Diabetes 2023; 14:528-538. [PMID: 37273246 PMCID: PMC10236998 DOI: 10.4239/wjd.v14.i5.528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 05/15/2023] Open
Abstract
Critically ill patients are prone to high glycemic variations irrespective of their diabetes status. This mandates frequent blood glucose (BG) monitoring and regulation of insulin therapy. Even though the most commonly employed capillary BG monitoring is convenient and rapid, it is inaccurate and prone to high bias, overestimating BG levels in critically ill patients. The targets for BG levels have also varied in the past few years ranging from tight glucose control to a more liberal approach. Each of these has its own fallacies, while tight control increases risk of hypoglycemia, liberal BG targets make the patients prone to hyperglycemia. Moreover, the recent evidence suggests that BG indices, such as glycemic variability and time in target range, may also affect patient outcomes. In this review, we highlight the nuances associated with BG monitoring, including the various indices required to be monitored, BG targets and recent advances in BG monitoring in critically ill patients.
Collapse
Affiliation(s)
- Deven Juneja
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Desh Deepak
- Department of Critical Care, King's College Hospital, Dubai 340901, United Arab Emirates
| | - Prashant Nasa
- Department of Critical Care, NMC Speciality Hospital, Dubai 7832, United Arab Emirates
- Department of Critical Care, College of Medicine and Health Sciences, Al Ain 15551, United Arab Emirates
| |
Collapse
|
27
|
Pfützner A, Tencer B, Stamm B, Mehta M, Sharma P, Gilyazev R, Jensch H, Thomé N, Huth M. Miniaturization of an Osmotic Pressure-Based Glucose Sensor for Continuous Intraperitoneal and Subcutaneous Glucose Monitoring by Means of Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094541. [PMID: 37177745 PMCID: PMC10181718 DOI: 10.3390/s23094541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
The Sencell sensor uses glucose-induced changes in an osmotic pressure chamber for continuous glucose measurement. A final device shall have the size of a grain of rice. The size limiting factor is the piezo-resistive pressure transducers inside the core sensor technology (resulting chamber volume: 70 µL. To achieve the necessary miniaturization, these pressure transducers were replaced by small (4000 × 400 × 150 nm³) nano-granular tunneling resistive (NTR) pressure sensors (chamber volume: 750 nL). For benchmark testing, we filled the miniaturized chamber with bovine serum albumin (BSA, 1 mM) and exposed it repeatedly to distilled water followed by 1 mM BSA solution. Thereafter, we manufactured sensors with glucose testing chemistry (ConcanavalinA/dextran) and investigated sensor performance with dynamic glucose changes between 0 and 300 mg/dL. Evaluation of the miniaturized sensors resulted in reliable pressure changes, both in the BSA benchmark experiment (30-35 mBar) and in the dynamic in vitro continuous glucose test (40-50 mBar). These pressure results were comparable to similar experiments with the previous larger in vitro sensors (30-50 mBar). In conclusion, the NTR pressure sensor technology was successfully employed to reduce the size of the core osmotic pressure chamber by more than 95% without loss in the osmotic pressure signal.
Collapse
Affiliation(s)
- Andreas Pfützner
- Lifecare AS, 5058 Bergen, Norway
- Lifecare Nanobiosensors GmbH, 55128 Mainz, Germany
- Lifecare Laboratories GmbH, 55128 Mainz, Germany
- Pfützner Science & Health Institute, 55128 Mainz, Germany
- Institute for Internal Medicine and Laboratory Medicine, University for Digital Technologies in Medicine & Dentistry, 9516 Wiltz, Luxembourg
| | | | - Boris Stamm
- Lifecare Nanobiosensors GmbH, 55128 Mainz, Germany
| | - Mandar Mehta
- Lifecare Nanobiosensors GmbH, 55128 Mainz, Germany
| | | | | | | | - Nicole Thomé
- Lifecare Laboratories GmbH, 55128 Mainz, Germany
| | - Michael Huth
- Institute of Physics, Goethe-Universität, 60323 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Weber MR, Diebold M, Wiesli P, Kistler AD. Accuracy of Flash Glucose Monitoring in Hemodialysis Patients With and Without Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2023; 131:132-141. [PMID: 36377191 PMCID: PMC9998185 DOI: 10.1055/a-1978-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIMS Glucose and insulin metabolism are altered in hemodialysis patients, and diabetes management is difficult in these patients. We aimed to validate flash glucose monitoring (FGM) in hemodialysis patients with and without diabetes mellitus as an attractive option for glucose monitoring not requiring regular self-punctures. METHODS We measured interstitial glucose using a FreeStyle Libre device in eight hemodialysis patients with and seven without diabetes mellitus over 14 days and compared the results to simultaneously performed self-monitoring of capillary blood glucose (SMBG). RESULTS In 720 paired measurements, mean flash glucose values were significantly lower than self-measured capillary values (6.17±2.52 vs. 7.15±2.41 mmol/L, p=1.3 E-86). Overall, the mean absolute relative difference was 17.4%, and the mean absolute difference was 1.20 mmol/L. The systematic error was significantly larger in patients without vs. with diabetes (- 1.17 vs. - 0.82 mmol/L) and on dialysis vs. interdialytic days (-1.09 vs. -0.90 mmol/L). Compared to venous blood glucose (72 paired measurements), the systematic error of FGM was even larger (5.89±2.44 mmol/L vs. 7.78±7.25 mmol/L, p=3.74E-22). Several strategies to reduce the systematic error were evaluated, including the addition of +1.0 mmol/L as a correction term to all FGM values, which significantly improved accuracy. CONCLUSIONS FGM systematically underestimates blood glucose in hemodialysis patients but, taking this systematic error into account, the system may be useful for glucose monitoring in hemodialysis patients with or without diabetes.
Collapse
Affiliation(s)
- Michèle R Weber
- Department of Medicine, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Matthias Diebold
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Wiesli
- Department of Medicine, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Andreas D Kistler
- Department of Medicine, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| |
Collapse
|
29
|
Non-invasive method for blood glucose monitoring using ECG signal. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2023. [DOI: 10.2478/pjmpe-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Introduction: Tight glucose monitoring is crucial for diabetic patients by using a Continuous Glucose Monitor (CGM). The existing CGMs measure the Blood Glucose Concentration (BGC) from the interstitial fluid. These technologies are quite expensive, and most of them are invasive. Previous studies have demonstrated that hypoglycemia and hyperglycemia episodes affect the electrophysiology of the heart. However, they did not determine a cohort relationship between BGC and ECG parameters.
Material and method: In this work, we propose a new method for determining the BGC using surface ECG signals. Recurrent Convolutional Neural Networks (RCNN) were applied to segment the ECG signals. Then, the extracted features were employed to determine the BGC using two mathematical equations. This method has been tested on 04 patients over multiple days from the D1namo dataset, using surface ECG signals instead of intracardiac signal.
Results: We were able to segment the ECG signals with an accuracy of 94% using the RCNN algorithm. According to the results, the proposed method was able to estimate the BGC with a Mean Absolute Error (MAE) of 0.0539, and a Mean Squared Error (MSE) of 0.1604. In addition, the linear relationship between BGC and ECG features has been confirmed in this paper.
Conclusion: In this paper, we propose the potential use of ECG features to determine the BGC. Additionally, we confirmed the linear relationship between BGC and ECG features. That fact will open new perspectives for further research, namely physiological models. Furthermore, the findings point to the possible application of ECG wearable devices for non-invasive continuous blood glucose monitoring via machine learning.
Collapse
|
30
|
Zhang J, Zheng Y, Lee J, Hoover A, King SA, Chen L, Zhao J, Lin Q, Yu C, Zhu L, Wu X. Continuous Glucose Monitoring Enabled by Fluorescent Nanodiamond Boronic Hydrogel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203943. [PMID: 36646501 PMCID: PMC9982560 DOI: 10.1002/advs.202203943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Continuous monitoring of glucose allows diabetic patients to better maintain blood glucose level by altering insulin dosage or diet according to prevailing glucose values and thus to prevent potential hyperglycemia and hypoglycemia. However, current continuous glucose monitoring (CGM) relies mostly on enzyme electrodes or micro-dialysis probes, which suffer from insufficient stability, susceptibility to corrosion of electrodes, weak or inconsistent correlation, and inevitable interference. A fluorescence-based glucose sensor in the skin will likely be more stable, have improved sensitivity, and can resolve the issues of electrochemical interference from the tissue. This study develops a fluorescent nanodiamond boronic hydrogel system in porous microneedles for CGM. Fluorescent nanodiamond is one of the most photostable fluorophores with superior biocompatibility. When surface functionalized, the fluorescent nanodiamond can integrate with boronic polymer and form a hydrogel, which can produce fluorescent signals in response to environmental glucose concentration. In this proof-of-concept study, the strategy for building a miniatured device with fluorescent nanodiamond hydrogel is developed. The device demonstrates remarkable long-term photo and signal stability in vivo with both small and large animal models. This study presents a new strategy of fluorescence based CGM toward treatment and control of diabetes.
Collapse
Affiliation(s)
- Jian Zhang
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Yongjun Zheng
- Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Burns Center of Changhai HospitalShanghaiChina
| | - Jimmy Lee
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Alex Hoover
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Sarah Ann King
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Lifeng Chen
- Pritzker School of Molecular EngineeringUniversity of ChicagoILUSA
| | - Jing Zhao
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Qiuning Lin
- School of Biomedical Engineering Shanghai Jiao Tong University800 Dong Chuan RoadShanghai200240China
| | - Cunjiang Yu
- Departments of Engineering Science and Mechanics, Biomedical Engineering, Materials Science and EngineeringMaterials Research InstitutePennsylvania State UniversityUniversity ParkPA16802USA
| | - Linyong Zhu
- Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Pritzker School of Molecular EngineeringUniversity of ChicagoILUSA
| | - Xiaoyang Wu
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| |
Collapse
|
31
|
Del Baldo F, Fracassi F. Continuous Glucose Monitoring in Dogs and Cats: Application of New Technology to an Old Problem. Vet Clin North Am Small Anim Pract 2023; 53:591-613. [PMID: 36854635 DOI: 10.1016/j.cvsm.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
In recent years, glucose monitoring has been revolutionized by the development of continuous glucose monitoring systems (CGMS), which are wearable non/minimally invasive devices that measure glucose concentration almost continuously for several consecutive d/wk. The Abbott FreeStyle Libre is the CGMS used most commonly. It has adequate clinical accuracy both in dogs and cats, even though the accuracy is lower in the hypoglycemic range. It allows an accurate identification of glycemic excursions occurring throughout the day as well as of glucose variations during consecutive days, enabling the clinician to make a more informed decision about the insulin dose and frequency of administration.
Collapse
Affiliation(s)
- Francesca Del Baldo
- Department of Veterinary Medical Science, University of Bologna, via Tolara di Sopra, 40066, Ozzano dell'Emilia, Bologna, Italy.
| | - Federico Fracassi
- Department of Veterinary Medical Science, University of Bologna, via Tolara di Sopra, 40066, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
32
|
Wound Healing Effect of 20(S)-Protopanaxadiol of Ginseng Involves VEGF-ERK Pathways in HUVECs and Diabetic Mice. Processes (Basel) 2023. [DOI: 10.3390/pr11030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Wound healing is the process of skin and soft tissue repair following an injury. Angiogenesis is an essential process in wound healing and plays an important role in tissue regeneration. Ginseng is mainly composed of saponins and protopanaxadiol-based ginsenosides, namely Rb1, Rb2, Rc, Re, Rg1, and Rf. 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT) are aglycones of ginsenosides produced by metabolic processes and heat treatment. This study aimed to investigate the wound healing effects of active ingredients of ginseng, namely ginsenosides and aglycones, in various cellular and animal skin wound models. The angiogenic effects of ginsenosides were investigated in human umbilical vein endothelial cells (HUVECs). All experiments were conducted at increased intracellular glucose concentrations and the induction of angiogenesis through tube formation was evaluated. Among the ginsenosides and aglycones used in this study, PPD showed the strongest wound-healing activity. Cell scratch experiments confirmed that PPD increased intracellular proliferation and cell migration at high glucose concentrations, and western blotting of HUVECs showed that phosphorylated ERK, Akt, and p38 were regulated. We observed accelerated wound healing with PPD treatment in STZ-treated mice. Overall, the findings suggested that PPD could possibly help improve skin wound healing in patients with diabetes, although further research is recommended.
Collapse
|
33
|
Niu D, Xu Q, Xu H, Yin S, Hao Z, Shi H, Zhou J, Tai S, Zou Z, Yang C, Liang C. Fabrication and application of a wireless high-definition endoscopic system in urological surgeries. BJU Int 2023; 131:183-189. [PMID: 35199469 PMCID: PMC10078773 DOI: 10.1111/bju.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To introduce a wireless high-definition endoscopic system (WHES) and compare it with a Storz high-definition (HD) system for image resolution, colour resolution, weight, and costs. MATERIALS AND METHODS The WHES incorporated a portable light-emitting diode light source and a wireless camera module, which can be compatible with different types of endoscopes. Images were wirelessly transmitted to a monitor or mobile platform such as smartphone through a receiver. The International Standards Organization 12233 resolution chart image was used for the comparison of image resolution and Munsell Colour Checker Chart for colour resolution. In all, 38 endourologists used a Likert questionnaire to blindly evaluate cystoscopic images from a patient with haematuria. The surgical team was asked about the overall performance of the WHES in 20 laparoscopic adrenalectomies using a unvalidated subjective survey. RESULTS There was no difference in image resolution between the two systems (5.82 vs 5.89 line pairs/mm). Without lens and respective light sources, there were better purple (ΔE = 21.48 vs 28.73), blue (ΔE = 34.88 vs 38.6) and red colour resolution (ΔE = 29.01 vs 35.45) for the WHES camera (P < 0.05), but orange (ΔE = 43.45 vs 36.52) and yellow (ΔE = 52.7 vs 35.93) resolutions were better for the Storz HD camera (P < 0.05). Comparing the WHES to a Storz laparoscopic system, the Storz system still had better resolution of orange and yellow, while the resolution of purple, blue, and red was similar for the two systems. The expert comments on resolution, brightness, and colour for cystoscopy were not statistically different, but the ergonomics score for the WHES was higher (3.7 vs 3.33, P = 0.038). The overall cost of the WHES was $23 000-25 000 compared with $45 000-50 000 for a Storz system. There were 100% general satisfaction for the WHES in the survey. CONCLUSION We developed a new WHES that provides the same resolution images as a Storz laparoscopic system and acceptable colour resolution with the advantages of wireless connection, small volume, low cost, portability, and high-speed wireless transmission.
Collapse
Affiliation(s)
- Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qihang Xu
- Hefei Deming Electronics Co Ltd, Hefei, China
| | - Hanjiang Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Shuiping Yin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Haoqiang Shi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhihui Zou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
34
|
Li Z, Wang Y, Fan Z, Sun Y, Sun Y, Yang Y, Zhang Y, Ma J, Wang Z, Zhu Z. A Dual-Function Wearable Electrochemical Sensor for Uric Acid and Glucose Sensing in Sweat. BIOSENSORS 2023; 13:bios13010105. [PMID: 36671938 PMCID: PMC9855683 DOI: 10.3390/bios13010105] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Simultaneous detection of uric acid and glucose using a non-invasive approach can be a promising strategy for related diseases, e.g., diabetes, gout, kidney disease, and cardiovascular disease. In this study, we have proposed a dual-function wearable electrochemical sensor for uric acid and glucose detection in sweat. The sensor with a four-electrode system was prepared by printing the ink on a common rubber glove. CV and chronoamperometry were used to characterize the prepared sensor's electrochemical sensing performance. The sensors exhibited the linear range from 0 to 1.6 mM and 0 to 3.7 mM towards uric acid and glucose electrochemical sensing in phosphate-buffered solution, with the corresponding limit of detection of 3.58 μM and 9.10 μM obtained, respectively. Moreover, the sensors had shown their feasibility of real sample sensing in sweat. The linear detection range for uric acid (0 to 40 μM) and glucose (0 to 1.6 mM) in the sweat can well cover their concentration range in physiological conditions. The prepared dual-function wearable electrochemical sensor features easy preparation, fast detection, high sensitivity, high selectivity, and the practical application potential in uric acid and glucose sensing.
Collapse
|
35
|
Jayakumar K, Lielpetere A, Domingo-Lopez DA, Levey RE, Duffy GP, Schuhmann W, Leech D. Tethering zwitterionic polymer coatings to mediated glucose biosensor enzyme electrodes can decrease sensor foreign body response yet retain sensor sensitivity to glucose. Biosens Bioelectron 2023; 219:114815. [PMID: 36302333 DOI: 10.1016/j.bios.2022.114815] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Foreign body response (FBR) is a major challenge that affects implantable biosensors and medical devices, including glucose biosensors, leading to a deterioration in device response over time. Polymer shields are often used to mitigate this issue. Zwitterionic polymers (ZPs) are a promising class of materials that reduce biofouling of implanted devices. A series of ZPs each containing tetherable epoxide functional groups was synthesised for application as a polymer shield for eventual application as implantable glucose biosensors. The polymer shields were initially tested for the ability to resist fibrinogen adsorption and fibroblast adhesion. All synthesised ZPs showed comparable behaviour to a commercial Lipidure ZP in resisting fibrinogen adsorption. Nafion, a common anionic shield used against electrochemical interferents, showed higher protein adsorption and comparable cell adhesion resistance as uncoated control surfaces. However, a poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) (MPC)-type ZP showed similar behaviour to Lipidure, with approximately 50% reduced fibrinogen adsorption and 80% decrease in fibroblast adhesion compared to uncoated controls. An MPC-coated amperometric glucose biosensor showed comparable current density and a 1.5-fold increase in sensitivity over an uncoated control biosensor, whereas all other polymer shields tested, including Lipidure, Nafion and a poly(ethyleneglycol) polymer, resulted in lower sensitivity and current density. Collectively, these characteristics make MPC-polymer shield coatings an appealing possibility for use in implantable glucose sensors and other implanted devices with the aim of reducing FBR while maintaining sensor performance.
Collapse
Affiliation(s)
- Kavita Jayakumar
- School of Biological & Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Lielpetere
- Analytical Chemistry-Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Dónal Leech
- School of Biological & Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
36
|
Chiu IM, Cheng CY, Chang PK, Li CJ, Cheng FJ, Lin CHR. Utilization of Personalized Machine-Learning to Screen for Dysglycemia from Ambulatory ECG, toward Noninvasive Blood Glucose Monitoring. BIOSENSORS 2022; 13:23. [PMID: 36671857 PMCID: PMC9855414 DOI: 10.3390/bios13010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Blood glucose (BG) monitoring is important for critically ill patients, as poor sugar control has been associated with increased mortality in hospitalized patients. However, constant BG monitoring can be resource-intensive and pose a healthcare burden in clinical practice. In this study, we aimed to develop a personalized machine-learning model to predict dysglycemia from electrocardiogram (ECG) data. We used the Medical Information Mart for Intensive Care III database as our source of data and obtained more than 20 ECG records from each included patient during a single hospital admission. We focused on lead II recordings, along with corresponding blood sugar data. We processed the data and used ECG features from each heartbeat as inputs to develop a one-class support vector machine algorithm to predict dysglycemia. The model was able to predict dysglycemia using a single heartbeat with an AUC of 0.92 ± 0.09, a sensitivity of 0.92 ± 0.10, and specificity of 0.84 ± 0.04. After applying 10 s majority voting, the AUC of the model's dysglycemia prediction increased to 0.97 ± 0.06. This study showed that a personalized machine-learning algorithm can accurately detect dysglycemia from a single-lead ECG.
Collapse
Affiliation(s)
- I-Min Chiu
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chi-Yung Cheng
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Kai Chang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chao-Jui Li
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chun-Hung Richard Lin
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
37
|
Ning X, Huang J, A Y, Yuan N, Chen C, Lin D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int J Mol Sci 2022; 23:15757. [PMID: 36555397 PMCID: PMC9779336 DOI: 10.3390/ijms232415757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels with a three-dimensional network structure are particularly outstanding in water absorption and water retention because water exists stably in the interior, making the gel appear elastic and solid. Although traditional hydrogels have good water absorption and high water content, they have poor mechanical properties and are not strong enough to be applied in some scenarios today. The proposal of double-network hydrogels has dramatically improved the toughness and mechanical strength of hydrogels that can adapt to different environments. Based on ensuring the properties of hydrogels, they themselves will not be damaged by excessive pressure and tension. This review introduces preparation methods for double-network hydrogels and ways to improve the mechanical properties of three typical gels. In addition to improving the mechanical properties, the biocompatibility and swelling properties of hydrogels enable them to be applied in the fields of biomedicine, intelligent sensors, and ion adsorption.
Collapse
Affiliation(s)
- Xuanjun Ning
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jiani Huang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Yimuhan A
- School of Materials and Metallurgy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ningning Yuan
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
38
|
Brown JVE, Ajjan R, Siddiqi N, Coventry PA. Acceptability and feasibility of continuous glucose monitoring in people with diabetes: protocol for a mixed-methods systematic review of quantitative and qualitative evidence. Syst Rev 2022; 11:263. [PMID: 36494845 PMCID: PMC9733378 DOI: 10.1186/s13643-022-02126-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Good glycaemic control is a crucial part of diabetes management. Traditional assessment methods, including HbA1c checks and self-monitoring of blood glucose, can be unreliable and inaccurate. Continuous glucose monitoring (CGM) offers a non-invasive and more detailed alternative. Availability of this technology is increasing worldwide. However, there is no current comprehensive evidence on the acceptability and feasibility of these devices. This is a protocol for a mixed-methods systematic review of qualitative and quantitative evidence about acceptability and feasibility of CGM in people with diabetes. METHODS We will search MEDLINE, Embase, CINAHL, and CENTRAL for qualitative and quantitative evidence about the feasibility and acceptability of CGM in all populations with diabetes (any type) using search terms for "continuous glucose monitoring" and "diabetes". We will not apply any study-type filters. Searches will be restricted to studies conducted in humans and those published from 2011 onwards. We will not restrict the search by language. Study selection and data extraction will be carried out by two reviewers independently using Rayyan and Eppi-Reviewer, respectively, with disagreements resolved by discussion. Data extraction will include key information about each study, as well as qualitative evidence in the form of participant quotes from primary studies and themes and subthemes based on the authors' analysis. Quantitative data relating to acceptability and feasibility including data loss, adherence, and quantitative ratings of acceptability will be extracted as means and standard deviations or n/N as appropriate. Qualitative evidence will be analysed using framework analysis informed by the Theoretical Framework of Acceptability. Where possible, quantitative evidence will be combined using random-effects meta-analysis; otherwise, a narrative synthesis will be performed. The most appropriate method for integrating qualitative and quantitative findings will be selected based on the data available. DISCUSSION Ongoing assessment of the acceptability of interventions has been identified as crucially important to scale-up and implementation. This review will provide new knowledge with the potential to inform a programme theory of CGM as well as future roll-out to potentially vulnerable populations, including those with severe mental illness. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021255141.
Collapse
Affiliation(s)
| | - Ramzi Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Najma Siddiqi
- Department of Health Sciences, University of York, York, YO10 5DD, UK.,Hull York Medical School, York, UK.,Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Peter A Coventry
- Department of Health Sciences, University of York, York, YO10 5DD, UK.,York Environmental Sustainability Institute, University of York, York, UK.,Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
| |
Collapse
|
39
|
Gildner TE, Eick GN, Schneider AL, Madimenos FC, Snodgrass JJ. After Theranos: Using point-of-care testing to advance measures of health biomarkers in human biology research. Am J Hum Biol 2022; 34:e23689. [PMID: 34669210 DOI: 10.1002/ajhb.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The rise and fall of the health technology startup Theranos is emblematic of the promise and peril of point-of-care testing (POCT). Instruments that deliver immediate results from minimally invasive samples at the location of collection can provide powerful tools to deliver health data in clinical and public health contexts. Yet, POCT availability is driven largely by market interests, which limits the development of inexpensive tests for diverse health conditions that can be used in resource-limited settings. These constraints, combined with complex regulatory hurdles and substantial ethical challenges, have contributed to the underutilization of POCT in human biology research. METHODS We evaluate current POCT capabilities and limitations, discuss promising applications for POCT devices in resource-limited settings, and discuss the future of POCT. RESULTS As evidenced by publication trends, POCT platforms have rapidly advanced in recent years, gaining traction among clinicians and health researchers. We highlight POCT devices of potential interest to population-based researchers and present specific examples of POCT applications in human biology research. CONCLUSIONS Several barriers can limit POCT applications, including cost, lack of regulatory approval for non-clinical use, requirements for expensive equipment, and the dearth of validation in remote field conditions. Despite these issues, we see immense potential for emerging POCT technology capable of analyzing new sample types and used in conjunction with increasingly common technology (e.g., smart phones). We argue that the fallout from Theranos may ultimately provide an opportunity to advance POCT, leading to more ethical data collection and novel opportunities in human biology research.
Collapse
Affiliation(s)
- Theresa E Gildner
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Geeta N Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Alaina L Schneider
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA.,Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
40
|
Chu Z, Ding Z, Ning X, A Y, Wang M, Shao K, Tang W, Chen C, Bai J. Non-gelated polymeric photonic crystal films. Front Chem 2022; 10:1009669. [PMID: 36204152 PMCID: PMC9531271 DOI: 10.3389/fchem.2022.1009669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
A rapid curing method for the preparation of colloidal photonic crystal films is presented. Firstly, a colloidal crystal array template was prepared by self-assembly of nanospheres, and then a dilute polymer solution was poured into the gap of the template. Then the composite photonic film was obtained as the polymer solution was cured. Such films have good properties in mechanical strength, anti pH interference, rapid solvent response and are easy to preserve. The films show good linear response to ethanol aqueous solutions of different concentrations, and the response equilibrium takes less than 20 s. The films also show long-term stability and reusability, and further functionalization can make the films multi-sensitive.
Collapse
Affiliation(s)
- Zhaoran Chu
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zheng Ding
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuanjun Ning
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Yimihan A
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Menghan Wang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Kan Shao
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwei Tang
- Modern Service Department, College of International Vocational Education, Shanghai Polytechnic University, Shanghai, China
| | - Cheng Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai, China
- *Correspondence: Cheng Chen, ; Jianzhong Bai,
| | - Jianzhong Bai
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Cheng Chen, ; Jianzhong Bai,
| |
Collapse
|
41
|
Yan L, Li Q, Guan Q, Han M, Zhao Y, Fang J, Zhao J. Evaluation of the performance and usability of a novel continuous glucose monitoring system. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Abstract
Background
Continuous glucose monitoring (CGM) can help manage diabetes mellitus (DM) and prevent hypoglycemia. This study aimed to evaluate the performance and usability of a novel SiJoy GS1 CGM system.
Methods
This multicenter trial enrolled participants with DM. Based on the comparison of glucose values measured by SiJoy GS1 CGM and venous blood glucose test, the 20/20% consistency and mean absolute relative difference (MARD%) were calculated, as well as Clarke and consensus error grid analysis. Product usability was evaluated by questionnaire completed by participants. Any occurrence of adverse events (AE) was documented.
Results
Seventy participants were included in the study. The mean age of participants was 41.5 ± 13.2 years, among which 29 (42.0%) were male, with the DM course of 8.6 ± 7.5 years. A total of 39 (56.5%) of them had type 1 DM, 24 (34.8%) had type 2 DM, and 6 (8.7%) were others for DM. The 20/20% consistency achieved 91.82%, which was higher than the target 65%. The percentage of A + B zones of Clarke and consensus error grid was 99.22% and 99.90%, respectively. The MARD value was 8.83% ± 4.03%. The mean score of usability questionnaire was 86.59 ± 5.17 out of 90. AE were observed in only one participant (mild fever), and no severe AEs occurred.
Conclusions
The SiJoy GS1 CGM system achieved satisfactory performance and usability. No severe AEs occurred and mild AE was reported in only one case.
Collapse
|
42
|
Yao Y, Zhao YH, Zheng WH, Huang HB. Subcutaneous continuous glucose monitoring in critically ill patients during insulin therapy: a meta-analysis. Am J Transl Res 2022; 14:4757-4767. [PMID: 35958452 PMCID: PMC9360883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Using continuous glucose monitoring (CGM) in critically ill adult patients requiring insulin therapy has increased with inconsistent results. Thus, we conducted a meta-analysis to assess the effect of CGM and frequent point-of-care (POC) measurements in such a patient population. METHODS We searched PubMed, Embase, Cochrane Library, China national knowledge infrastructure, and Wanfang for relevant articles from inception to Jan 15, 2022. Randomized controlled trials (RCTs) were considered if they focused on critically ill patients who required insulin and were treated with CGM or any POC measurements. We used the Cochrane risk evaluating tool to assess study quality. Subgroup analysis and publication bias were also conducted. RESULTS We finally included 19 RCTs with 1,852 participants. The quality of the included studies were at a low to moderate levels. Overall, CGM devices significantly reduced hypoglycemia incidence (Risk ratio (RR) 0.35; 95% CI, 0.25-0.49; P<0.00001) than the POC measurement. Further subgroup and sensitivity analyses confirmed this result. The CGM group also had lower overall mortality (RR 0.54; 95% CI, 0.34-0.86; P=0.01), lower glucose variability, and nosocomial infection. The time in, below, or above target blood glucose range, insulin use, and length of stay in the ICU were comparable between the two groups. In addition, few studies provided data in favor of decreased nursing workload and medical costs in the CGM group. CONCLUSIONS The CGM technique could significantly reduce hypoglycemia incidence, overall mortality, and glucose variability compared to POC measurement in critically ill patients. However, further large, well-designed RCTs are required to confirm our results.
Collapse
Affiliation(s)
- Yan Yao
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| | - Yi-He Zhao
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| | - Wen-He Zheng
- Department of Critical Care Medicine, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine No. 282 of 54 Road, Gulou District, Fuzhou 350000, Fujian, China
| | - Hui-Bin Huang
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| |
Collapse
|
43
|
Dillmann C, Amoura L, Fall Mostaine F, Coste A, Bounyar L, Kessler L. Feasibility of Real-Time Continuous Glucose Monitoring Telemetry System in an Inpatient Diabetes Unit: A Pilot Study. J Diabetes Sci Technol 2022; 16:955-961. [PMID: 33660531 PMCID: PMC9264424 DOI: 10.1177/1932296821994586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hospitalization of persons with diabetes in an inpatient diabetes unit is challenging, notably for patients having different profiles. We aimed to evaluate the feasibility and the benefit of a continuous glucose monitoring (CGM) telemetry system to control glucose excursions in hospitalized patients with diabetes, according to their diabetes type and the reasons for their hospitalization. METHOD A prospective pilot study was conducted in 53 insulin-requiring diabetes patients hospitalized in the general ward. Glucose was monitored using Guardian Connect (GC, Medtronic) to adopt insulin therapy. The time in range (TIR, target 70-180 mg/dL), the time below range (TBR), and the time above range (TAR) were recorded by GC between the start of hospitalization (SH) and end of hospitalization (EH), and analyzed according to the diabetes type (type 1 diabetes n = 28, type 2 diabetes n = 25) and the reasons for hospitalization (acute complications n = 35, therapeutic education n = 18). Patient and caregiver satisfaction was also assessed. RESULTS In patients with type 2 diabetes and those hospitalized for acute complications, TIR significantly increased between the SH and EH, from 75.7% (95%CI 48.5-84.6) to 82.2% (95%CI 63.2-91.8) P = 0.043 and from 58.3% (95%CI 46.3-69.7) to 66.4% (95%CI 55.6-75.5) P = 0.031, respectively, and TAR significantly decreased, with no change in TBR. In patients with diabetes hospitalized for therapeutic education, TBR significantly decreased from 3.4% (95%CI 0-9.4) to 0% (95%CI 0-3.8) P = 0.037. Finally, 94% of patients and caregivers deemed the GC system useful. CONCLUSIONS CGM telemetry system use is feasible and well accepted in patients hospitalized in diabetes care unit and could be useful to improve therapeutic education and metabolic control, especially for specific homogenous populations with diabetes.
Collapse
Affiliation(s)
| | - Lamia Amoura
- Department of Diabetology, University
Hospital of Strasbourg, France
| | | | - Adrien Coste
- Department of Diabetology, University
Hospital of Strasbourg, France
| | - Leila Bounyar
- Department of Diabetology, University
Hospital of Strasbourg, France
| | - Laurence Kessler
- Department of Diabetology, University
Hospital of Strasbourg, France
- Inserm UMR 1260, Regenerative
Nanomedicine, University of Strasbourg, France
- Laurence Kessler, MD, PhD, Service
d’Endocrinologie-Diabète-Nutrition, Hôpital Civil, 1 Place de l’Hôpital,
Strasbourg Cedex 67 091, France.
| |
Collapse
|
44
|
Hina A, Saadeh W. Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology—A Review. SENSORS 2022; 22:s22134855. [PMID: 35808352 PMCID: PMC9268854 DOI: 10.3390/s22134855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
The past few decades have seen ongoing development of continuous glucose monitoring (CGM) systems that are noninvasive and accurately measure blood glucose levels. The conventional finger-prick method, though accurate, is not feasible for use multiple times a day, as it is painful and test strips are expensive. Although minimally invasive and noninvasive CGM systems have been introduced into the market, they are expensive and require finger-prick calibrations. As the diabetes trend is high in low- and middle-income countries, a cost-effective and easy-to-use noninvasive glucose monitoring device is the need of the hour. This review paper briefly discusses the noninvasive glucose measuring technologies and their related research work. The technologies discussed are optical, transdermal, and enzymatic. The paper focuses on Near Infrared (NIR) technology and NIR Photoplethysmography (PPG) for blood glucose prediction. Feature extraction from PPG signals and glucose prediction with machine learning methods are discussed. The review concludes with key points and insights for future development of PPG NIR-based blood glucose monitoring systems.
Collapse
|
45
|
Soni A, Wright N, Agwu JC, Drew J, Kershaw M, Moudiotis C, Regan F, Williams E, Timmis A, Ng SM. Fifteen-minute consultation: Practical use of continuous glucose monitoring. Arch Dis Child Educ Pract Ed 2022; 107:188-193. [PMID: 33963071 PMCID: PMC9125373 DOI: 10.1136/archdischild-2020-321190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/04/2022]
Abstract
Type 1 diabetes is a self-managed condition. Regular monitoring of blood glucose (BG) levels has been the cornerstone of diabetes management. Finger prick BG testing traditionally has been the standard method employed. More recently, rapid advancements in the development of continuous glucose monitoring devices have led to increased use of technology to help children and young people with diabetes manage their condition. These devices have the potential to improve diabetes control and reduce hypoglycaemia especially if used in conjunction with a pump to automate insulin delivery. This paper aims to provide an update on main CGM devices available and practical considerations for doctors if they come across a child with diabetes who is using one of these devices.
Collapse
Affiliation(s)
- Astha Soni
- Paediatrics, Sheffield Children's Hospital, Sheffield, UK
| | - Neil Wright
- Paediatric Endocrinology & Diabetes, Sheffield Children's Hospital, Sheffield, UK
| | - Juliana Chizo Agwu
- Paediatrics, Sandwell and West Birmingham NHS Trust, West Bromwich, UK.,Institute of Clinical Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Josephine Drew
- Paediatrics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Melanie Kershaw
- Endocrinology and diabetes, Birmingham Children's Hospital, NHS Foundation Trust, Birmingham, UK
| | | | - Fiona Regan
- Paediatrics, Wexham Park Hospital, Slough, UK
| | - Eleri Williams
- Paediatrics, Hampshire Hospitals NHS Foundation Trust, Winchester, Hampshire, UK
| | - Alison Timmis
- Paediatrics, Countess of Chester Hospital, NHS Foundation Trust, Chester, Cheshire West and Chester, UK
| | - Sze May Ng
- Paediatric Department, Southport and Ormskirk NHS Trust, Ormskirk, UK.,Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
47
|
Brady B, Li W, Farooque N, Ehrhardt C, Meyerhoff ME, Wang X. S-Nitrosothiol-Impregnated Silicone Catheter for Colorimetric Sensing of Indole and E. coli: Toward On-Body Detection of Urinary Tract Infections. ACS Sens 2022; 7:1712-1719. [PMID: 35604028 DOI: 10.1021/acssensors.2c00439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although there are many techniques to detect pathogenic bacteria, most of them are only suited for in vitro diagnostics. We report a urinary catheter-based colorimetric sensor for potential on-body detection of E. coli, the most prevalent bacterial species in urinary tract infections associated with the use of urinary catheters. In urine, indole is secreted by E. coli and reacts with a nitrosating agent incorporated in a silicone catheter. A red dimeric product, indoxyl red, is generated within silicone rubber to allow for color-based indole sensing with high sensitivity, linearity, and specificity. This reaction is initiated by the nitrosation reaction of indole at its C-3 position via reagents like sodium nitrite or S-nitroso-N-acetyl-penicillamine under aerobic conditions. The generated 3-nitrosoindole undergoes tautomerization, dimerization, and deoximation to form indoxyl red with high absorbance at 537 nm. In contrast to other indole sensors, the presented method can be applied in real catheters to detect indole and E. coli in biofluids such as urine. The is because (1) S-nitroso-N-acetyl-penicillamine, the nitrosating agent, can be impregnated into silicone elastomers, (2) indole from urine is extracted into silicone due to its hydrophobicity, and (3) the high acidity and oxygen solubility of silicone facilitates the sensing reaction within the silicone matrix. This silicone-based colorimetric sensor clearly differentiates E. coli below and above 105 CFU/mL, which is the threshold concentration of bacteriuria. We expect that early diagnosis of urinary tract infections using the naked eye is possible by functionalizing an exposed section of urinary catheters with the proposed molecular probe.
Collapse
Affiliation(s)
- Brock Brady
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Wuwei Li
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Nashwan Farooque
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Christopher Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, Virginia 23284, United States
| | - Mark E. Meyerhoff
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
48
|
Isaacson B, Kaufusi S, Sorensen J, Joy E, Jones C, Ingram V, Mark N, Phillips M, Briesacher M. Demonstrating the Clinical Impact of Continuous Glucose Monitoring Within an Integrated Healthcare Delivery System. J Diabetes Sci Technol 2022; 16:383-389. [PMID: 32935561 PMCID: PMC8861781 DOI: 10.1177/1932296820955228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Approximately 30 million Americans currently suffer from diabetes, and nearly 55 million people will be impacted by 2030. Continuous glucose monitoring (CGM) systems help patients manage their care with real-time data. Although approximately 95% of those with diabetes suffer from type 2, few studies have measured CGM's clinical impact for this segment within an integrated healthcare system. METHODS A parallel randomized, multisite prospective trial was conducted using a new CGM device (Dexcom G6) compared to a standard of care finger stick glucometer (FSG) (Contour Next One). All participants received usual care in primary care clinics for six consecutive months while using these devices. Data were collected via electronic medical records, device outputs, exit surveys, and insurance company (SelectHealth) claims in accordance with institutional review board approval. RESULTS Ninety-nine patients were randomized for analysis (n = 50 CGM and n = 49 FSG). CGM patients significantly decreased hemoglobin A1c (p = .001), total visits (p = .009), emergency department encounters (p = .018), and labs ordered (p = .001). Among SelectHealth non-Medicare Advantage patients, per member per month savings were $417 for CGM compared to FSG, but $9 more for Medicare Advantage. Seventy percent of CGM users reported that the technology helped them better understand daily activity and diet compared to only 16% for FSG. DISCUSSION Participants using CGM devices had meaningful improvements in clinical outcomes, costs, and self-reported measures compared to the FSG group. Although a larger study is necessary to confirm these results, CGM devices appear to improve patient outcomes while making treatment more affordable.
Collapse
|
49
|
Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Mishra A, Basu S, Aminabhavi TM. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS APPLIED BIO MATERIALS 2022; 5:945-970. [PMID: 35170319 DOI: 10.1021/acsabm.1c01289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is a physiological and metabolic disorder affecting millions of people worldwide, associated with global morbidity, mortality, and financial expenses. Long-term complications can be avoided by frequent, continuous self-monitoring of blood glucose. Therefore, this review summarizes the current state-of-art glycemic control regimes involving measurement approaches and basic concepts. Following an introduction to the significance of continuous glucose sensing, we have tracked the evolution of glucose monitoring devices from minimally invasive to non-invasive methods to present an overview of the spectrum of continuous glucose monitoring (CGM) technologies. The conveniences, accuracy, and cost-effectiveness of the real-time CGM systems (rt-CGMs) are the factors considered for discussion. Transdermal biosensing and drug delivery routes have recently emerged as an innovative approach to substitute hypodermal needles. This work reviews skin-patchable glucose monitoring sensors for the first time, providing specifics of all the major findings in the past 6 years. Skin patch sensors and their progressive form, i.e., microneedle (MN) array sensory and delivery systems, are elaborated, covering self-powered, enzymatic, and non-enzymatic devices. The critical aspects reviewed are material design and assembly techniques focusing on flexibility, sensitivity, selectivity, biocompatibility, and user-end comfort. The review highlights the advantages of patchable MNs' multi-sensor technology designed to maintain precise blood glucose levels and administer diabetes drugs or insulin through a "sense and act" feedback loop. Subsequently, the limitations and potential challenges encountered from the MN array as rt-CGMs are listed. Furthermore, the current statuses of working prototype glucose-responsive "closed-loop" insulin delivery systems are discussed. Finally, the expected future developments and outlooks in clinical applications are discussed.
Collapse
Affiliation(s)
- G Manasa
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Amit Mishra
- Department of Chemical Engineering, Inha University, Incheon 22212, South Korea
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| |
Collapse
|
50
|
Lei L, Zhao C, Zhu X, Yuan S, Dong X, Zuo Y, Liu H. Nonenzymatic Electrochemical Sensor for Wearable Interstitial Fluid Glucose Monitoring. ELECTROANAL 2022; 34:415-422. [DOI: 10.1002/elan.202060601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
AbstractWe report on a nonenzymatic electrochemical sensor for wearable glucose monitoring in interstitial fluid. The sensor exhibited acceptable selectivity and reliability for continuous glucose detection for up to 30 days. The sensor tip is coated with polyurethane, and the biocompatibility of the tip is investigated by tissue staining. A fully integrated wearable glucose monitoring system is developed with a wireless connection with a smartphone. The test results are in agreement with reference methods. So, we believe the sensor is promising for the development of a continuous glucose monitoring system and diabetes management.
Collapse
Affiliation(s)
- Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiaofei Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Shuai Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| |
Collapse
|