1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Yuan Z, Li J, Na Q. Recent advances in biomimetic nanodelivery systems for the treatment of glioblastoma. Colloids Surf B Biointerfaces 2025; 252:114668. [PMID: 40168694 DOI: 10.1016/j.colsurfb.2025.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Glioblastoma remain one of the deadliest malignant tumors in the central nervous system, largely due to their aggressiveness, high degree of heterogeneity, and the protective barrier of the blood-brain barrier (BBB). Conventional therapies including surgery, chemotherapy and radiotherapy often fail to improve patient prognosis due to limited drug penetration and non-specific toxicity. We then present recent advances in biomimetic nanodelivery systems, focusing on cell membrane coatings, nanoenzymes, and exosome-based carriers. By mimicking endogenous biological functions, these systems demonstrate improved immune evasion, enhanced BBB traversal, and selective drug release within the tumor microenvironment. Nevertheless, we acknowledge unresolved bottlenecks related to large-scale production, stability, and the intricacies of regulatory compliance. Looking forward, we propose an interdisciplinary roadmap that combines materials engineering, cellular biology, and clinical expertise. Through this collaborative approach, this work aims to optimize biomimetic nanodelivery for glioma therapy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Zhenru Yuan
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Jing Li
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Qi Na
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
3
|
Qiao K, Huang Y, Ning S, Lyu M, Xie J, Zhang S, Lu X, Yu Y, Jiang W, Liu B, Fan K, Liu T. Camouflaged Nanozymes with Oxidation-Promoting Activities Triggering Ferroptosis for Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417370. [PMID: 40285563 PMCID: PMC12165144 DOI: 10.1002/advs.202417370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/14/2025] [Indexed: 04/29/2025]
Abstract
Radioresistance presents a substantial obstacle to achieving optimal therapeutic outcomes for breast cancer treatment. In this study, we develop a cancer cell membrane (CM) - coated nanozyme system (MPPC@CM), specifically designed for radioimmunotherapy to address this issue. This innovative system involves the in situ reduction of platinum and palladium on mesoporous silica nanospheres, followed by functionalization with cinnamaldehyde via surface grafting. The CM coating endows the nanozyme with enhanced tumor-specific targeting capability due to its homing properties. Upon uptake by tumor cells, MPPC@CM catalytically generates O2 from H2O2, mitigating the hypoxic tumor microenvironment and reducing radioresistance. The intracellular glutathione depletion mediated by Michael addition reactions concurrently disrupts endogenous antioxidant defenses against reactive oxygen species (ROS). This redox imbalance is synergistically amplified through nanozyme-mediated catalytic activities including both peroxidase-like and oxidase-like functions. The resultant massive ROS accumulation establishes a self-reinforcing oxidative cascade that ultimately induces functional inactivation of glutathione peroxidase 4. The immunosuppressive environment is remodeled by this disturbance in redox balance, which accelerates ferroptosis and increases CD8+ T-cell infiltration and dendritic cell maturation. Overall, this cell membrane-camouflaged nanozyme holds significant potential to enhance the efficacy of radioimmunotherapy.
Collapse
Affiliation(s)
- Kun Qiao
- Department of Oncological SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
- Key Laboratory of Tumor Biotherapy of Heilongjiang ProvinceHarbin Medical University Cancer HospitalHarbin150000China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Shipeng Ning
- Research Center of Nanomedicine Technologythe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Meng Lyu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jieqiong Xie
- Research Center of Nanomedicine Technologythe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Shiyuan Zhang
- Department of Oncological SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xiuxin Lu
- Department of Oncological SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Yuan Yu
- Department of Oncological SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouHenan450000China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Kelong Fan
- CAS Engineering Laboratory for NanozymeKey Laboratory of Biomacromolecules (CAS)CAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Medical CenterSchool of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450000China
- Nanozyme Laboratory in ZhongyuanHenan Academy of Innovations in Medical ScienceZhengzhouHenan450000China
| | - Tong Liu
- Department of Oncological SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
- NHC Key Laboratory of Cell TransplantationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150001China
| |
Collapse
|
4
|
Gouveia BA, Ramos FR, Silva IKL, Oliveira TESD, Vasconcelos RDO, Xavier JG, Strefezzi RF. Prognostic Implications of Decorin, E-Cadherin and EGFR Expression in Inflammatory and Non-Inflammatory Canine Mammary Carcinomas. Vet Comp Oncol 2025; 23:168-177. [PMID: 39853670 DOI: 10.1111/vco.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Inflammatory mammary carcinoma (IMC) is the most aggressive variant of invasive mammary tumours in dogs and in women. Decorin is an extracellular matrix molecule whose expression can be reduced or absent in various human cancers, which is associated with a poor prognosis. E-cadherin is a cell adhesion protein whose expression is reduced in several neoplasms. However, it is overexpressed in inflammatory breast cancers of women. EGFR is also associated with cancer development and is commonly overexpressed in aggressive neoplasms. This study aimed to characterise the expressions of Decorin, E-cadherin, and EGFR in canine inflammatory and non-inflammatory mammary carcinomas (IMC and non-IMC) and to evaluate their expression levels as prognostic indicators for survival and occurrence of metastases. Thirty-three IMC and 43 non-IMC cases were analysed retrospectively and submitted to immunohistochemical analysis. The reactions were quantified in five high-power field images from areas of the highest intensity and frequency of immunostaining (hot spots). We found significantly lower expression of Decorin and higher of E-cadherin and EGFR in canine IMCs. Patients with tumours that exhibited Decorin expression in less than 26.35% of epithelial cells had shorter survival (p = 0.0410) and a higher occurrence of distant metastases (p = 0.0115). E-cadherin is overexpressed in canine IMCs (p < 0.0001), similar to what occurs in women, reinforcing that dogs can be used as a study model for human IMC. EGFR overexpression in canine IMCs (p = 0.0322) provides evidence for potential targeted therapy with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Bethânia Almeida Gouveia
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Fernanda Ramalho Ramos
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ingrid Kester Lima Silva
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | - Ricardo Francisco Strefezzi
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Zhang X, Yang J, Feng Q, Gu L, Qin G, Cheng C, Hou S, Shi Z. The immune landscape and prognostic analysis of CXCL8 immune-related genes in cervical squamous cell carcinoma. ENVIRONMENTAL TOXICOLOGY 2025; 40:902-911. [PMID: 38597597 DOI: 10.1002/tox.24283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Cervical squamous cell carcinoma (CESC), one of the most common malignancies in women, imposes a significant burden on women's health worldwide. Despite extensive research, the molecular and pathogenic mechanisms of cervical squamous cell carcinoma and CESC remain unclear. This study aimed to explore the immune-related genes, immune microenvironment infiltration, and prognosis of CESC, providing a theoretical basis for guiding clinical treatment. Initially, by mining four gene sets and immune-related gene sets from public databases, 14 immune-related genes associated with CESC were identified. Through univariate and multivariate COX regression analyses, as well as lasso regression analysis, four CESC-independent prognostic genes were identified, and a prognostic model was constructed, dividing them into high and low-risk groups. The correlation between these genes and immune cells and immune functions were explored through ssGSEA enrichment analysis, revealing a close association between the high-risk group and processes such as angiogenesis and epithelial-mesenchymal transition. Furthermore, using public databases and qRT-PCR experiments, significant differences in CXCL8 expression between normal cervical cells and cervical cancer cells were discovered. Subsequently, a CXCL8 knockdown plasmid was constructed, and the efficiency of CXCL8 knockdown was validated in two CESC cell lines, MEG-01 and HCE-1. Through CCK-8, scratch, and Transwell assays, it was confirmed that CXCL8 knockdown could inhibit the proliferation, invasion, and migration abilities of CESC cells. Targeting CXCL8 holds promise for personalized therapy for CESC, providing a strong theoretical basis for achieving clinical translation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qianqian Feng
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liping Gu
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Gongzhao Qin
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Cheng
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shunyu Hou
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhouhong Shi
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Chen S, Wang Y, Da Zhou, Hu J. Bayesian Inference of Phenotypic Plasticity of Cancer Cells Based on Dynamic Model for Temporal Cell Proportion Data. Biom J 2025; 67:e70055. [PMID: 40298362 DOI: 10.1002/bimj.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 04/30/2025]
Abstract
Mounting evidence underscores the prevalent hierarchical organization of cancer tissues. At the foundation of this hierarchy reside cancer stem cells, a subset of cells endowed with the pivotal role of engendering the entire cancer tissue through cell differentiation. In recent times, substantial attention has been directed toward the phenomenon of cancer cell plasticity, where the dynamic interconversion between cancer stem cells and nonstem cancer cells has garnered significant interest. Since the task of detecting cancer cell plasticity from empirical data remains a formidable challenge, we propose a Bayesian statistical framework designed to infer phenotypic plasticity within cancer cells, utilizing temporal data on cancer stem cell proportions. Our approach is grounded in a stochastic model, adept at capturing the dynamic behaviors of cells. Leveraging Bayesian analysis, we scrutinize the moment equation governing cancer stem cell proportions, derived from the Kolmogorov forward equation of our stochastic model. Our methodology introduces an improved Euler method for parameter estimation within nonlinear ordinary differential equation models, also extending insights to compositional data. Extensive simulations robustly validate the efficacy of our proposed method. To further corroborate our findings, we apply our approach to analyze published data from SW620 colon cancer cell lines. Our results harmonize with in situ experiments, thereby reinforcing the utility of our method in discerning and quantifying phenotypic plasticity within cancer cells.
Collapse
Affiliation(s)
- Shuli Chen
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Mathematical Science, Xiamen University, Xiamen, Fujian, China
| | - Yuman Wang
- School of Mathematical Science, Xiamen University, Xiamen, Fujian, China
| | - Da Zhou
- School of Mathematical Science, Xiamen University, Xiamen, Fujian, China
| | - Jie Hu
- School of Mathematical Science, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Bhanu P, Godwin AK, Umar S, Mahoney DE. Bacterial Extracellular Vesicles in Oncology: Molecular Mechanisms and Future Clinical Applications. Cancers (Basel) 2025; 17:1774. [PMID: 40507254 PMCID: PMC12153730 DOI: 10.3390/cancers17111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/18/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as pivotal mediators of host-microbe interactions, profoundly influencing cancer biology. These nanoscale vesicles, produced by both Gram-positive and Gram-negative bacteria, carry diverse biomolecular cargo such as proteins, lipids, nucleic acids, and metabolites. BEVs play dualistic roles in tumor promotion and suppression by modulating the tumor microenvironment, immune responses, and genetic regulation. This review synthesizes the current understanding of BEVs in various cancers, including gastrointestinal, ovarian, breast, lung, brain, and renal malignancies. BEVs are highlighted for their potential as diagnostic biomarkers, prognostic indicators, and therapeutic agents, including their applications in immunotherapy and advanced engineering for precision medicine. Challenges such as heterogeneity, standardization, and clinical scalability are critically analyzed, with case examples providing actionable insights. Future directions emphasize interdisciplinary collaborations, emerging technologies, and the integration of BEV-based tools into clinical workflows. This review underscores the transformative potential of BEVs in advancing cancer diagnostics and therapeutics, paving the way for innovations in precision oncology.
Collapse
Affiliation(s)
- Piyush Bhanu
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- The Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Diane E. Mahoney
- School of Nursing, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
8
|
Chen W, Li Z, Tang J, Liu S. Dendritic cell-based immunotherapy for head and neck squamous cell carcinoma: advances and challenges. Front Immunol 2025; 16:1573635. [PMID: 40491907 PMCID: PMC12146400 DOI: 10.3389/fimmu.2025.1573635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with poor response to conventional treatments such as surgery, chemotherapy and radiotherapy. Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of HNSCC, but many patients still exhibit poor responses due to insufficient T cell infiltration and impaired dendritic cell (DC) function within the tumor microenvironment. DCs are crucial for initiating anti-tumor immune responses, but their dysfunction in HNSCC leads to inadequate T cell activation and immune evasion. DC-based immunotherapy offers a promising approach to enhance ICIs therapy efficacy by improving DC function and enhancing T cell-mediated anti-tumor immune response. This review discusses the mechanisms underlying DC dysfunction in HNSCC, recent advances in DC-based immunotherapy, and the potential for combination therapies to overcome resistance to ICIs. Future strategies should focus on optimizing DC vaccines and developing personalized treatments to improve outcomes for HNSCC patients.
Collapse
Affiliation(s)
| | | | | | - Shuguang Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Yang Y, Qing L, You C, Li Q, Xu W, Dong Z. Methuosis key gene ARF6 as a diagnostic, prognostic and immunotherapeutic marker for prostate cancer: based on a comprehensive pan-cancer multi-omics analysis. Discov Oncol 2025; 16:882. [PMID: 40410613 PMCID: PMC12102050 DOI: 10.1007/s12672-025-02275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a leading cause of cancer-related mortality among men worldwide. Despite progress in the understanding of tumor biology, the prognosis for advanced prostate cancer remains poor, necessitating the identification of novel diagnostic, prognostic, and therapeutic biomarkers. Methuosis, a recently identified form of programmed cell death (PCD), is characterized by cytoplasmic vacuole accumulation and subsequent cell rupture, distinct from classical apoptosis and necrosis. The key regulatory gene in Methuosis, ARF6 (ADP-ribosylation factor 6), has emerged as a potential marker for cancer diagnosis and treatment. However, its role in prostate cancer and other malignancies remains insufficiently understood. METHODS In this study, we performed a comprehensive pan-cancer multi-omics analysis to investigate the role of ARF6 in Methuosis across multiple cancer types, with a specific focus on PCa as the primary context. Using data from public databases, including RNA sequencing, gene expression profiling, and clinical outcomes, we assessed the association between ARF6 expression and patient prognosis in PCa within this broader pan-cancer framework. Additionally, we employed functional enrichment analyses and survival analysis to explore the potential of ARF6 as a diagnostic and prognostic marker for prostate cancer. Immunotherapy-related gene expression signatures were also evaluated to determine the therapeutic relevance of ARF6. RESULTS ARF6 was significantly overexpressed in PCa tissues compared to normal tissues and was associated with poor prognosis (p < 0.05), particularly in advanced and metastatic stages. Receiver operating characteristic (ROC) analysis revealed a diagnostic AUC of 0.792 for ARF6. Functional analyses indicated that ARF6 regulates pathways critical to cell migration, invasion, and drug resistance. Moreover, ARF6 expression showed a strong negative correlation with immune checkpoint markers, such as PD-L1 (r = - 0.74), suggesting its potential as an immunotherapy target. These findings underscore ARF6's pivotal role in Methuosis and its promise as a biomarker in PCa. CONCLUSION ARF6 is a key regulator of Methuosis in prostate cancer, contributing to tumor progression, metastasis, and resistance to treatment. Our findings support the potential of ARF6 as a diagnostic, prognostic, and immunotherapeutic target in prostate cancer. Further experimental validation is needed to confirm these observations and to explore the therapeutic implications of targeting ARF6 in cancer treatment.
Collapse
Affiliation(s)
- Yongjin Yang
- Department of Urology, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730000, Gansu, China
| | - Liangliang Qing
- Department of Urology, Zigong Fourth People's Hospital, No.19 Tanmulin Street, Ziliujing District, Zigong, 643000, China
| | - Chengyu You
- Department of Urology, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730000, Gansu, China
| | - Qingchao Li
- Department of Urology, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730000, Gansu, China
| | - Wenbo Xu
- Department of Urology, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730000, Gansu, China
| | - Zhilong Dong
- Department of Urology, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
10
|
Fan P, Liu Y, Ma T, Wang Q, Li L. Analysis of immune infiltration in basal cell carcinoma based on transcriptome sequencing and experimental validation of diagnostic biomarkers. Discov Oncol 2025; 16:895. [PMID: 40410644 PMCID: PMC12102445 DOI: 10.1007/s12672-025-02621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common type of malignant skin tumour, and its incidence is increasing worldwide. While it grows slowly, BCC is locally invasive, causing significant tissue damage. This study investigated the role of mRNAs in BCC through bioinformatics and experimental validation to elucidate the molecular mechanisms involved. METHODS Differentially expressed genes (DEGs) were identified from the transcriptome data of 30 BCC patients and 16 controls from the GSE7553, GSE103439, and GSE42109 datasets. Gene Ontology and KEGG analyses were performed to explore gene expression and pathways. A protein‒protein interaction (PPI) network was constructed to identify hub genes, and immune cell infiltration was analysed to study the tumour microenvironment. The diagnostic potential of target genes (LEF1, LGR5, and SOX4) was assessed using ROC curves. Gene expression was validated with qPCR and Western blotting. RESULTS A total of 135 DEGs were identified, with 9 hub genes selected. LEF1, LGR5, and SOX4 showed strong diagnostic potential, with AUC values of 0.888, 0.955, and 0.996, respectively. The immune cell analysis revealed increased numbers of B cells, NK cells, and T cells in BCC, whereas the numbers of DCs, pDCs, and Treg cells were reduced. qPCR and Western blotting confirmed increased LEF1 and LGR5 expression in BCC. SOX4 expression was increased according to the qPCR results but was not significantly elevated according to the Western blot results, warranting further validation. CONCLUSIONS LEF1, LGR5, and SOX4 may play roles in BCC pathogenesis and could serve as diagnostic biomarkers. These findings provide insights into BCC development and support future research for improved detection and treatment.
Collapse
Affiliation(s)
- Pengfei Fan
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Yun Liu
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Tengxiao Ma
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Qiaoxing Wang
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Lei Li
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| |
Collapse
|
11
|
Ding Z, Yang L, Wang X, Wang Y, Chen X. The expression and prognostic value of CCL19 in breast cancer. Discov Oncol 2025; 16:830. [PMID: 40392467 PMCID: PMC12092893 DOI: 10.1007/s12672-025-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Breast cancer ranks as the foremost cause of cancer-related mortality among women globally. Timely diagnosis stands as the most effective approach in mitigating breast cancer mortality rates. There exists a close relationship between immune processes and tumorigenesis. This study aims to elucidate the immune mechanisms and potential biomarkers associated with breast cancer using bioinformatics techniques. OBJECTIVE Initially, differentially expressed genes were identified through consensus analysis of invasive breast cancer (BRCA) samples sourced from The Cancer Genome Atlas (TCGA) database, focusing on immunotherapy response. Subsequently, protein-protein interaction (PPI) networks, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to refine the selection of potential genes. Lastly, expression and prognostic analyses of hub genes were conducted to identify reliable key genes, with a focus on CCL19. Immunohistochemistry (IHC) was employed to assess the differential expression of CCL19 in both tumor and adjacent breast tissue samples. Additionally, protein correlation analysis, signaling pathway analysis, immune infiltration analysis, gene co-expression analysis, and drug sensitivity analysis of CCL19 were conducted to investigate its pathological clinical features and potential biological functions. RESULTS CCL19 expression exhibited a significant increase in breast cancer. Elevated CCL19 expression correlates with advanced tumor stage and indicates a favorable prognosis in breast cancer. CCL19 expression correlates with the abundance of diverse tumor-infiltrating immune cells (TIICs). CCL19 exhibits a positive correlation with the expression of the majority of immune-related genes. Enrichment analysis revealed the involvement of CCL19 in immune-related pathways and the PI3K-Akt signaling pathway. These findings suggest that CCL19 may influence breast cancer prognosis through immune infiltration. Patients exhibiting high CCL19 expression demonstrated more favorable responses to immunotherapy. CONCLUSION Breast cancer demonstrates overexpression of CCL19. CCL19 holds promise as a biomarker for forecasting breast cancer prognosis and as a potential therapeutic target.
Collapse
Affiliation(s)
- Zonghao Ding
- General Surgery Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Yang
- AnHui Medical University, Hefei, China
| | | | - Yong Wang
- General Surgery Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Chen
- Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
12
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
13
|
Liu J, Huang H, Zhang X, Shen Y, Jiang D, Hu S, Li S, Yan Z, Hu W, Luo J, Yao H, Chen Y, Tang B. Unveiling the Cuproptosis in Colitis and Colitis-Related Carcinogenesis: A Multifaceted Player and Immune Moderator. RESEARCH (WASHINGTON, D.C.) 2025; 8:0698. [PMID: 40370501 PMCID: PMC12076167 DOI: 10.34133/research.0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Cuproptosis represents a novel mechanism of cellular demise characterized by the intracellular buildup of copper ions. Unlike other cell death mechanisms, its distinct process has drawn considerable interest for its promising applications in managing inflammatory bowel disease (IBD) and colorectal cancer (CRC). Emerging evidence indicates that copper metabolism and cuproptosis may exert dual regulatory effects within pathological cellular environments, specifically modulating oxidative stress responses, metabolic reprogramming, and immunotherapeutic efficacy. An appropriate level of copper may promote disease progression and exert synergistic effects, but exceeding a certain threshold, copper can inhibit disease development by inducing cuproptosis in pathological cells. This makes abnormal copper levels a potential new therapeutic target for IBD and CRC. This review emphasizes the dual function of copper metabolism and cuproptosis in the progression of IBD and CRC, while also exploring the potential application of copper-based therapies in disease treatment. The analysis further delineates the modulatory influence of tumor immune microenvironment on cuproptosis dynamics, while establishing the therapeutic potential of cuproptosis-targeted strategies in circumventing resistance to both conventional chemotherapeutic agents and emerging immunotherapies. This provides new research directions for the development of future cuproptosis inducers. Finally, this article discusses the latest advances in potential molecular targets of cuproptosis and their related genes in the treatment of IBD and CRC, highlighting future research priorities and unresolved issues.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hairuo Huang
- China Medical University, Shenyang 110122, China
| | - Xiaojie Zhang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yang Shen
- Department of Radiation Oncology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| | - DeMing Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering,
Zhejiang University, Hangzhou 310007, China
| | - Shurong Hu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyan Li
- Department of Nursing, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zelin Yan
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Wen Hu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Jinhua Luo
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Haibo Yao
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital,
Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| | - Yan Chen
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bufu Tang
- Department of Interventional Radiology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| |
Collapse
|
14
|
Luo Y, Fu H, Yu C. Based on small molecules: development and application of fibroblast activation protein inhibitors radiopharmaceutical in tumor precision therapy. Front Pharmacol 2025; 16:1593380. [PMID: 40438601 PMCID: PMC12116444 DOI: 10.3389/fphar.2025.1593380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/30/2025] [Indexed: 06/01/2025] Open
Abstract
The discovery of biomarkers for malignant tumors is driving the development of new radiopharmaceuticals in nuclear medicine. The development and optimization of novel radiopharmaceuticals to occupy an increasingly important role in tumor diagnosis and treatment. In recent years, fibroblast activation protein (FAP) has gained attention as a promising tumor target due to its widespread expression across various tumors. FAP inhibitor (FAPI) radiopharmaceuticals are considered to be the most promising to be developed for targeting FAP due to their rapid and specific tumor targeting. This review briefly outlines the developmental history of FAP-targeted small-molecule enzyme activity inhibitors, highlighting the effective role of targeting molecules, linkers, and certain functional groups in the delivery of radioisotopes to cancerous tissues. These development strategies will serve as a reference for the further development and application of relevant radiopharmaceuticals. This review also delineates the progress on clinical FAPI as a radioisotope delivery vehicle for the targeted radioligand therapy of tumors and introduces the latest combination therapy involving FAPI radiopharmaceutical for tumor treatment. The findings provide novel therapeutic insights into the targeted radioligand therapy of tumors.
Collapse
Affiliation(s)
- Yihui Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Haitian Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
16
|
Hu W, Liang J, Luo J, Fan J, Hu H, Wang X, Zhou P, Zhang X, Zhou J. Elevated platelet-to-lymphocyte ratio predicts poor clinical outcomes in non-muscle invasive bladder cancer: a systematic review and meta-analysis. Front Immunol 2025; 16:1578069. [PMID: 40433371 PMCID: PMC12106335 DOI: 10.3389/fimmu.2025.1578069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction The prognostic significance of platelet-to-lymphocyte ratio (PLR) in non-muscle invasive bladder cancer (NMIBC) remains controversial despite numerous investigations. This study aimed to systematically evaluate the prognostic value of PLR in NMIBC. Materials and methods An extensive systematic search was executed utilizing four major electronic databases: Embase, PubMed, Web of Science, and Cochrane Library. The prognostic significance of PLR was assessed using pooled hazard ratios (HRs) with 95% CIs. Forest plots were used to present data visualization and statistical summaries, illustrating the effects of individual studies and the reliability of the pooled results. Funnel plot analysis and Egger's test were employed to evaluate the potential presence of publication bias. Sensitivity analysis was performed to assess the robustness of the pooled findings. Subgroup analysis and meta-regression were used to identify sources of heterogeneity. Results Eleven retrospective studies encomprising 3,566 patients met the inclusion criteria. Elevated PLR notably correlated with inferior progression-free survival (PFS) (HR=2.132, 95% CI: 1.146-3.967, p=0.017) and relapse-free survival (RFS) (HR=1.732, 95% CI: 1.174-2.554, p=0.006). No statistically meaningful correlation emerged in cancer-specific survival (CSS) (HR=1.218, 95% CI: 0.800-1.854, p=0.358) or overall survival (OS) (HR=1.350, 95% CI: 0.611-2.983, p=0.459). Publication bias was detected in RFS analyses (Egger's test, P=0.010). Sensitivity analysis demonstrated that the pooled results were robust. Subgroup analysis and meta-regression identified geographic differences and patient characteristics as key sources of heterogeneity in RFS outcomes. Subgroup analysis indicated that geographic differences and sample size were potential sources of heterogeneity in PFS results. Discussion This study comprehensively analyzed 11 studies and 3,566 NMIBC cases and found that elevated PLR was significantly associated with poorer RFS and PFS, suggesting that PLR can be used as a prognostic biomarker for the management of NMIBC. The prognostic value of PLR may be related to immune regulation and inflammatory response in the tumor microenvironment; nevertheless, further studies are needed to elucidate its mechanism and establish its clinical application. Conclusions This study demonstrates that elevated PLR serves as an independent predictor of poor PFS and RFS in NMIBC patients. As a cost-effective biomarker, PLR shows promise in risk stratification and treatment planning. However, large-scale prospective studies are warranted to validate these findings and establish standardized cut-off values. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024621307 , identifier CRD42024621307.
Collapse
Affiliation(s)
- Wenfeng Hu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jinze Liang
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jin Luo
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan Hubei, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jie Fan
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan Hubei, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Huaichun Hu
- Department of Orthopedics II, Xingguo County Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
| | - Xinwen Wang
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan Hubei, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Peng Zhou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiaoyi Zhang
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jie Zhou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan Hubei, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
17
|
Giram P, Md Mahabubur Rahman K, Aqel O, You Y. In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment. ACS Biomater Sci Eng 2025; 11:2550-2583. [PMID: 40223683 DOI: 10.1021/acsbiomaterials.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanomedicines have significantly improved life expectancy and survival rates for cancer patients in current standard care. However, recurrence of cancer due to metastasis remains a significant challenge. Vaccines can provide long-term protection and are ideal for preventing bacterial and viral infections. Cancer vaccines, however, have shown limited therapeutic efficacy and raised safety concerns despite extensive research. Cancer vaccines target and stimulate responses against tumor-specific antigens and have demonstrated great potential for cancer treatment in preclinical studies. However, tumor-associated immunosuppression and immune tolerance driven by immunoediting pose significant challenges for vaccine design. In situ vaccination represents an alternative approach to traditional cancer vaccines. This strategy involves the intratumoral administration of immunostimulants to modulate the growth and differentiation of innate immune cells, such as dendritic cells, macrophages, and neutrophils, and restore T-cell activity. Currently approved in situ vaccines, such as T-VEC, have demonstrated clinical promise, while ongoing clinical trials continue to explore novel strategies for broader efficacy. Despite these advancements, failures in vaccine research highlight the need to address tumor-associated immune suppression and immune escape mechanisms. In situ vaccination strategies combine innate and adaptive immune stimulation, leveraging tumor-associated antigens to activate dendritic cells and cross-prime CD8+ T cells. Various vaccine modalities, such as nucleotide-based vaccines (e.g., RNA and DNA vaccines), peptide-based vaccines, and cell-based vaccines (including dendritic, T-cell, and B-cell approaches), show significant potential. Plant-based viral approaches, including cowpea mosaic virus and Newcastle disease virus, further expand the toolkit for in situ vaccination. Therapeutic modalities such as chemotherapy, radiation, photodynamic therapy, photothermal therapy, and Checkpoint blockade inhibitors contribute to enhanced antigen presentation and immune activation. Adjuvants like CpG-ODN and PRR agonists further enhance immune modulation and vaccine efficacy. The advantages of in situ vaccination include patient specificity, personalization, minimized antigen immune escape, and reduced logistical costs. However, significant barriers such as tumor heterogeneity, immune evasion, and logistical challenges remain. This review explores strategies for developing potent cancer vaccines, examines ongoing clinical trials, evaluates immune stimulation methods, and discusses prospects for advancing in situ cancer vaccination.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Osama Aqel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
18
|
Shi K, Peng X, Xu T, Lin Z, Sun M, Li Y, Xian Q, Xiao T, Chen S, Xie Y, Zhang R, Zeng J, Xu B. Precise Electromagnetic Modulation of the Cell Cycle and Its Applications in Cancer Therapy. Int J Mol Sci 2025; 26:4445. [PMID: 40362682 PMCID: PMC12072891 DOI: 10.3390/ijms26094445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Precise modulation of the cell cycle via electromagnetic (EM) control presents a groundbreaking approach for cancer therapy, especially in the development of personalized treatment strategies. EM fields can precisely regulate key cellular homeostatic mechanisms such as proliferation, apoptosis, and repair by finely tuning parameters like frequency, intensity, and duration. This review summarizes the mechanisms through which EM fields influence cancer cell dynamics, highlighting recent developments in high-throughput electromagnetic modulation platforms that facilitate precise cell cycle regulation. Additionally, the integration of electromagnetic modulation with emerging technologies such as artificial intelligence, immunotherapy, and nanotechnology is explored, collectively enhancing targeting precision, immune activation, and therapeutic efficacy. A systematic analysis of existing clinical studies indicates that EM modulation technology significantly overcomes key challenges such as tumor heterogeneity, microenvironment complexity, and treatment-related adverse effects. This review summarizes the prospects of electromagnetic modulation in clinical translation and future research directions, emphasizing its critical potential as a core element in individualized and multimodal cancer treatment strategies.
Collapse
Affiliation(s)
- Keni Shi
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (K.S.)
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xiqing Peng
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (K.S.)
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ting Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (K.S.)
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ziqi Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Mingyu Sun
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Yiran Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qingyi Xian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Tingting Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Siyuan Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ying Xie
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ruihan Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Dongguan 523808, China
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (K.S.)
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
19
|
Amiri M, Tabatabai TS, Seifi Z, Rostaminasab G, Mikaeili A, Hosseini F, Rezakhani L. Three-dimensional in vitro models in head and neck cancer: current trends and applications. Med Oncol 2025; 42:194. [PMID: 40320444 DOI: 10.1007/s12032-025-02737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/18/2025] [Indexed: 06/01/2025]
Abstract
Head and neck cancer (HNC) is the sixth most prevalent malignancy worldwide and includes a variety of upper gastrointestinal abnormalities. HNC includes oral, throat, voice box, nasal cavity, paranasal sinuses, and salivary gland cancers. Squamous cells in the mouth, nose, and throat cause HNC. Drugs, alcohol, poor diets, smoking, and genetics all contribute to this condition. Cancer research has focused on three-dimensional (3D) models in HNC biology in recent decades. An adequate microenvironmental system and cancer cell culture are the initial steps to understanding cancer cells' complicated interactions with their surroundings. New 3D models claim to bridge in vivo and in vitro investigations and erase the gap. Interdisciplinary cell biology and tissue engineering researchers are creating 3D cancer tissue models to better understand the illness and develop more accurate cancer medicines. Tissue engineering researchers, who are always exploring novel approaches to treat cancer, have been able to include the third dimension into laboratory settings and mimic cell-to-cell and cell-to-matrix interactions by recreating the tumor microenvironment using 3D models and so make research on cancer easier. This review addresses recent developments in tissue engineering with an emphasis on 3D models in HNC.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Hosseini
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Li M, Liu B, Xian M, Wang S, Liu P. Bioinformatics combined with network pharmacology and experimental validation to identify key biomarkers of hepatocellular carcinoma and corresponding compounds in Radix Astragali and Pueraria Mirifica. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5351-5371. [PMID: 39549064 DOI: 10.1007/s00210-024-03597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
The occurrence and death rates of primary hepatocellular carcinoma (HCC) are increasing, and there remains a shortage of effective oral medications with minimal side effects. We aim to identify potential biomarkers and compounds from Radix Astragali (RA) and Pueraria Mirifica (PM) to treat liver cancer and improve prognosis. Differentially expressed genes (DEGs) associated with HCC were identified by bioinformatics analysis of three datasets, GSE112791, GSE101685, and GSE45114. Using public databases to predict the bioactive components and possible targets of RA and PM. Target crossover from Gene Expression Omnibus (GEO) and public databases were used to identify potential biomarkers for HCC. Subsequently, validation and prognostic value analyses were performed using the Gene Expression Profile Interaction Analysis (GEPIA) platform. The Cytoscape software created a network of "compound targets" to pinpoint compounds linked to the biomarkers. Molecular docking techniques were utilized to validate the connection between these compounds and the identified biomarkers. Ultimately, the HepG2 liver cancer cell line was chosen to assess the inhibitory effect of Hederagenin (HDG) and to confirm the expression of ADH1B through Western blot analysis. In this study, four key biomarkers (NR1I2, ADH1B, NQO1, GHR) were identified. Molecular docking showed that these four core targets could form stable conformations with the corresponding compounds. As the drug concentration decreases, the inhibitory effect on HepG2 diminishes, and the survival rate of HepG2 cells significantly declines following the administration of 100 µmol/L HDG. Compared to the control, the expression of ADH1B protein is significantly increased in HepG2 cells treated with 100 µmol/L HDG. The study identified four key biomarkers (ADH1B, GHR, NQO1, NR1I2) that have prognostic ability for HCC. This study provides biomarkers and potential targeted monomeric medicines for treating HCC.
Collapse
Affiliation(s)
- Mohan Li
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bang Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China.
- Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu, 527300, China.
| | - Peiyi Liu
- Huangpu People's Hospital of Zhongshan, Zhongshan, 528429, China
| |
Collapse
|
21
|
Lu M, Zhang T, Yang Y, Lin X, Huang J, Sun Y, Sun T. MXene Loaded With Cu (2- x )Se Nanozyme for Nanocatalytic Tumor Therapy. Chemistry 2025; 31:e202500574. [PMID: 40107883 DOI: 10.1002/chem.202500574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Traditional tumor treatments (surgery, radiotherapy, chemotherapy, etc.) have certain limitations and can have serious negative effects, such as difficulty in cutting out tumors, damage to normal tissues, and complications. Ordinary nanozymes have low catalytic activity and require higher doses for treatment, which can increase in vivo toxicity and side effects. To address these limitations, we developed a Ti3C2 MXene-based nanocomposite (Ti3C2/Cu(2- x )Se) integrating Cu(2- x )Se nanozymes with dual enzyme-mimicking activities (catalase and peroxidase) and MXene's photothermal properties. The Cu(2- x )Se component catalyzes the decomposition of tumor-overexpressed H2O2 into O2 and cytotoxic ·OH, alleviating hypoxia while inducing oxidative stress. Simultaneously, MXene's high surface area and photothermal capability enhance nanozyme stability, biocompatibility, and catalytic efficiency under near-infrared irradiation. Notably, the photothermal effect amplifies enzymatic activity, enabling synergistic nanocatalytic-photothermal therapy. This synergy not only degrades glutathione to suppress tumor antioxidant defenses but also achieves targeted tumor ablation with reduced dosage requirements. Our work highlights a rational design of MXene-based nanozymes for enhanced multimodal tumor therapy, offering a paradigm for nanocomposite-driven disease treatment.
Collapse
Affiliation(s)
- Mengtian Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Tianye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Yue Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Xin Lin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Jin Huang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, People's Republic of China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
22
|
Tapiainen VV, Sirniö P, Elomaa H, Karjalainen H, Äijälä VK, Kastinen M, Kehusmaa A, Pohjanen VM, Lindgren O, Sirkiä O, Ahtiainen M, Helminen O, Wirta EV, Rintala J, Saarnio J, Rautio T, Seppälä TT, Böhm J, Mecklin JP, Tuomisto A, Mäkinen MJ, Väyrynen JP. Stroma AReactive Invasion Front Areas (SARIFA), tumour immune microenvironment, and survival in colorectal cancer. Br J Cancer 2025; 132:805-813. [PMID: 40055484 PMCID: PMC12041369 DOI: 10.1038/s41416-025-02972-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND SARIFA (Stroma AReactive Invasion Front Areas), defined as the direct contact between a tumour cell cluster and adipose cells at the invasion margin, has been proposed as a prognostic marker in gastrointestinal cancers. We hypothesized that SARIFA is associated with an immunosuppressive tumour microenvironment. METHODS SARIFA status was evaluated in two large colorectal cancer cohorts (N = 1876). Survival analyses were performed using multivariable Cox regression. Immune cell densities were analysed utilizing multiplex and conventional immunohistochemistry combined with digital image analysis. RESULTS SARIFA-positivity was independently associated with a shorter cancer-specific survival in both cohorts [Cohort 1: hazard ratio (HR) for SARIFA-positive (vs. negative) 1.75 (95% CI 1.35-2.25), P < 0.0001; Cohort 2: HR for SARIFA-positive (vs. negative) 2.09 (95% CI 1.43-3.05), P = 0.0001]. SARIFA-positivity was associated with lower densities of CD3+ T cells, CD66b+ granulocytes, M1-like macrophages, and CD14+HLA-DR+ mature monocytic cells, but higher densities of M2-like macrophages and CD14+HLA-DR- immature monocytic cells. Mean Cohen's kappa for SARIFA evaluation between eight investigators was 0.80. CONCLUSIONS SARIFA status is a highly reproducible, independent prognostic factor in colorectal cancer. SARIFA-positivity is associated with lower densities of antitumourigenic immune cells and the polarisation of macrophages towards a protumourigenic M2-like phenotype.
Collapse
Affiliation(s)
- Vilja V Tapiainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Päivi Sirniö
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Hanna Elomaa
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Education and Research, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Henna Karjalainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Ville K Äijälä
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Meeri Kastinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Akseli Kehusmaa
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Vesa-Matti Pohjanen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Outi Lindgren
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Onni Sirkiä
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maarit Ahtiainen
- Central Finland Biobank, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Olli Helminen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Erkki-Ville Wirta
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Jukka Rintala
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Juha Saarnio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Tero Rautio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Toni T Seppälä
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Applied Tumour Genomics, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Tuomisto
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Markus J Mäkinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.
| |
Collapse
|
23
|
Lei Y, Shu D, Xia J, Zhang T, Wei H. Extracellular nicotinamide phosphoribosyltransferase visfatin activates JAK2-STAT3 pathway in cancer-associated fibroblasts to promote colorectal cancer metastasis. Genes Genomics 2025; 47:615-624. [PMID: 39643827 PMCID: PMC12081565 DOI: 10.1007/s13258-024-01596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Metastasis is one of the major challenges in the treatment of colorectal cancer (CRC), during which cancer-associated fibroblasts (CAFs) in the tumor microenvironment are critically involved. OBJECTIVE In this study, we aim to explore the regulatory role of extracellular nicotinamide phosphoribosyltransferase Visfatin and its impact on CRC metastasis. METHODS To examine the effect of visfatin on CAFs, human CRC tissue-derived CAFs were exposed to visfatin, and the expression of inflammatory factors, activation of JAK-STAT pathway and production of ROS in CAFs were assessed. To examine the effect of visfatin-treated CAFs on CRC metastasis, human CRC cell line SW480 or SW620 were cultured with the conditioned medium derived from visfatin-treated CAFs, and the invasion and migration ability of SW480 or SW620 cells were evaluated by transwell migration and matrigel invasion assays. RESULTS Our previous study found that visfatin, a secreted form of nicotinamide phosphoribosyltransferase that governs the rate-limiting step of NAD synthesis, promoted CRC metastasis. However, little is known about the effect of visfatin on CAFs. The conditioned medium derived from visfatin- treated CAFs promotes the migratory and invasive capability of CRC cells, and enhance lung metastasis in mouse model. Visfatin treatment stimulated the expression of a couple of inflammatory factors in CAFs, which was mediated by visfatin-induced activation of JAK- STAT pathway and accumulation of ROS. Inhibition of JAK-STAT pathway or neutralization of cellular ROS attenuated visfatin-mediated migration and invasion of CRC cells. CONCLUSIONS The present work highlights a critical role of visfatin in the crosstalk between CRC cells and CAFs, which moonlight as a non-metabolic extracellular signal molecule to hijacks JAK-STAT pathway in CAFs to promote CRC metastasis.
Collapse
Affiliation(s)
- Yun Lei
- Pathological Diagnosis Center, Zhoushan Hospital of Zhejiang Province, Zhejiang, China
| | - Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Jianyu Xia
- School of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
| | - He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
| |
Collapse
|
24
|
Bartoszewska E, Czapla M, Rakoczy K, Filipski M, Rekiel K, Skowron I, Kulbacka J, Kobierzycki C. The Role of Ion Channels in Cervical Cancer Progression: From Molecular Biomarkers to Diagnostic and Therapeutic Innovations. Cancers (Basel) 2025; 17:1538. [PMID: 40361464 PMCID: PMC12071956 DOI: 10.3390/cancers17091538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Ion channels are proteins that regulate the flow of ions across cell membranes, playing a vital role in cervical cancer development and progression. These channels serve as both potential diagnostic markers and therapeutic targets, offering new opportunities for cancer treatment. Moreover, ion channels are crucial molecular indicators and possible therapeutic targets due to their role in the development of cervical cancer. Our review focuses on the various types of ion channels which are associated with cervical cancer (CCa), including sodium, calcium, and potassium channels. In our review, we clarify their diagnostic and prognostic value, as well as their relationship to the prognosis and stage of the disease. We also examine how ion channels contribute to the metastasis of cervical cancer, specifically in relation to their influence on cell motility, invasion, and interaction with the tumor microenvironment. By examining preclinical and clinical research involving ion channel blockers and modulators, we also highlight the therapeutic potential of targeting ion channels. We have demonstrated the available assays and imaging methods based on ion channel activity as examples of emerging diagnostic breakthroughs that show promise for enhancing the early detection of cervical cancer. Additionally, the possibility that ion channel modulator-based combination therapy could improve the efficacy of traditional treatments is investigated. To demonstrate the potential of ion channels in cervical cancer diagnosis and treatment, our review highlights the current challenges and the promising role in cervical cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Melania Czapla
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rekiel
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
25
|
Guan H, Xiong Q, Xiong J, Liu Y, Zhang W. CD8+ T cell activation in endometrial cancer: prognostic implications and potential for personalized therapy. Front Immunol 2025; 16:1542669. [PMID: 40356925 PMCID: PMC12066579 DOI: 10.3389/fimmu.2025.1542669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Background As an important component in preventing the progression of endometrial cancer, CD8 T cells play a crucial role in this process and are important targets for immunotherapy. However, the status of CD8+ T cells in endometrial cancer and the key genes influencing their activation still remain to be elucidated. Methods Genes associated with the activation of CD8+ T cells were identified through differential analysis and weighted gene co-expression network analysis (WGCNA). A risk score model was constructed using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. The clinical characteristics and differences between the high-risk group and the low-risk group were explored, and the applicability of the model to chemotherapy, poly (ADP-ribose) polymerase (PARP) inhibitors, and immune checkpoint inhibitors was evaluated. The characteristics of the model at the single-cell level were studied, and the tumor-suppressive effect of ASB2 was verified through experiments on endometrial cancer cells. Results A risk model based on genes related to the activation of CD8+ T cells was constructed, and the prognostic differences were verified using the Kaplan-Meier curve. A nomogram was designed to predict the survival probability. Pathway analysis showed that it was related to metabolism and DNA repair. There were significant differences between the high-risk and low-risk groups in terms of tumor mutational burden (TMB), checkpoint molecules, and major histocompatibility complex (MHC) class I molecules, and they had different sensitivities to different therapies. The tumor-suppressive effect of ASB2 was confirmed in experiments on cell proliferation, invasion, and migration. Conclusion This study provides a predictive tool for endometrial cancer. The classification based on the status of CD8+ T cells can distinguish the prognosis and treatment response, highlighting the potential of this model in personalized treatment.
Collapse
Affiliation(s)
- HaoTong Guan
- Department of Gynecologic, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - QiuShuang Xiong
- Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - JiaQiang Xiong
- Department of Gynecologic, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Gynecologic, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Zhang
- Department of Gynecologic, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
26
|
Cheon J, Kim SH, Park J, Kim TH. Prognostic Significance of CLDN1, INHBA, and CXCL12 in Colon Adenocarcinoma: A Multi-Omics and Single-Cell Approach. Biomedicines 2025; 13:1035. [PMID: 40426863 PMCID: PMC12108730 DOI: 10.3390/biomedicines13051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Colon adenocarcinoma (COAD), the most prevalent form of colorectal cancer, remains a leading cause of cancer-related mortality. Advances in various treatments for COAD have significantly improved treatment outcomes. However, therapeutic limitations persist, highlighting the need for personalized strategies driven by novel biomarkers. The aim was to identify key hub genes that could be potential biomarkers of COAD using comprehensive bioinformatic analyses. Methods: Differentially expressed genes (DEGs) and co-DEGs were identified from COAD gene expression datasets. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Hub genes were extracted from protein-protein interaction (PPI) networks and validated epigenetically using microRNA (miRNA) and DNA methylation datasets. Their expression patterns were further examined via single-cell RNA sequencing (scRNA-seq) and immune cell infiltration analysis. Prognostic relevance was assessed based on tumor metastasis and survival outcomes. Results: Gene expression profiling identified 118 co-DEGs, with GO and KEGG pathway analyses revealing significant pathway enrichment. PPI network analysis pinpointed 27 key co-DEGs. Epigenetic profiling indicated that both miRNA interference and DNA methylation regulate CLDN1, INHBA, and CXCL12 expression levels. scRNA-seq analysis showed elevated CLDN1 expression in epithelial cells and INHBA in myeloid cells, and reduced CXCL12 expression in stromal cells. Prognostic analysis further demonstrated that CLDN1 and INHBA are significantly associated with poor COAD outcomes. Conclusions: We identified some potential prognostic biomarkers for patients with COAD. Further experimental validation is required to translate these findings into precision medicine for COAD.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Science, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Hyun Kim
- Department of Internal Medicine, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Luan X, Peng X, Hou Q, Liu J. LINC00892 as a Prognostic Biomarker in Lung Adenocarcinoma: Role in Immune Infiltration and EMT Suppression. J Immunol Res 2025; 2025:4341348. [PMID: 40308809 PMCID: PMC12041620 DOI: 10.1155/jimr/4341348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent and aggressive form of lung cancer with poor prognosis, largely due to late-stage diagnosis and limited therapeutic options. Recent studies suggest that long noncoding RNAs (lncRNAs) play critical roles in cancer progression and immune modulation, emerging as potential therapeutic targets. In this study, we investigated the expression and functional role of LINC00892 in LUAD using RNA sequencing data from The Cancer Genome Atlas (TCGA) and functional assays in vitro and in vivo. We found that LINC00892 is significantly downregulated in LUAD tissues compared to normal tissues, and lower LINC00892 expression correlates with poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI), particularly in younger patients and those with early-stage disease. Bioinformatic analyses revealed that LINC00892 expression is positively correlated with immune cell infiltration, including CD4+ and CD8+ T cells, and negatively correlated with tumor-promoting Th2 cells, suggesting its role in shaping the tumor immune microenvironment. In vitro functional assays showed that LINC00892 overexpression inhibits LUAD cell proliferation, migration, and invasion while promoting apoptosis. Mechanistically, LINC00892 upregulation was found to suppress epithelial-mesenchymal transition (EMT) by increasing E-cadherin expression and decreasing levels of N-cadherin, vimentin, and slug. Additionally, in an in vivo mouse xenograft model, LINC00892 overexpression suppressed tumor growth and metastasis, accompanied by enhanced immune cell infiltration such as CD4+ and CD8+ T cells. Collectively, these findings suggest that LINC00892 acts as a tumor suppressor in LUAD by modulating immune infiltration and EMT, highlighting its potential as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xinyu Luan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuxing Peng
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qinghua Hou
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Zhang S, Pan J, Guo H, Guan X, Yan C, Ji L, Wu X, Huangfu H. Prognostic value and immunotherapy analysis of immune cell-related genes in laryngeal cancer. PeerJ 2025; 13:e19239. [PMID: 40247837 PMCID: PMC12005187 DOI: 10.7717/peerj.19239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Background Laryngeal cancer (LC) is a prevalent head and neck carcinoma. Extensive research has established a link between immune cells in the tumor microenvironment (TME) and cancer progression, as well as responses to immunotherapy. This study aims to develop a prognostic model based on immune cell-related genes and examine the TME in LC. Methods RNA-seq data for LC were sourced from The Cancer Genome Atlas (TCGA), and GSE27020 and GSE51985 datasets were retrieved from the Gene Expression Omnibus (GEO) database. Key genes were identified through the intersection of differentially expressed genes (DEGs) between normal and LC samples and module genes derived from weighted gene co-expression network analysis (WGCNA), followed by functional enrichment analysis. The prognostic risk model was constructed using univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. Gene Set Variation Analysis (GSVA) was subsequently performed for hallmark and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses in high- and low-risk groups. Immune infiltration analysis between risk groups was conducted via Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and single sample gene set enrichment analysis (ssGSEA). Finally, the relationship between the risk model and immunotherapy response was explored. Results A total of 124 key genes were identified through the overlap analysis, predominantly enriched in GO terms such as defense response to viruses and regulation of response to biotic stimuli, as well as KEGG pathways related to phagosome and Epstein-Barr virus infection. Machine learning indicated that the optimal prognostic model was constructed from two biomarkers, RENBP and OLR1. GSVA revealed that in the high-risk group, epithelial-mesenchymal transition and ECM-receptor interaction were the most significantly enriched pathways, while autoimmune thyroid disease, ribosome, and oxidative phosphorylation predominated in the low-risk group. Additionally, the stromal score was significantly higher in the high-risk group, while CD8+ T cells, cytolytic activity, inflammation promotion, and T cell co-stimulation were elevated in the low-risk group. Tumor Immune Dysfunction and Exclusion (TIDE) analysis showed higher TIDE and exclusion scores in the high-risk group, whereas the CD8 score was higher in the low-risk group. Finally, CD274 (PD-L1) expression was significantly elevated in the low-risk group. Conclusions This study identified two key prognostic biomarkers, RENBP and OLR1, and characterized TME differences across risk groups, offering novel insights into the diagnosis and treatment of LC.
Collapse
Affiliation(s)
- Sen Zhang
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Jianrui Pan
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Huina Guo
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Xiaoya Guan
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Chenxu Yan
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Lingling Ji
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Xiansha Wu
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Hui Huangfu
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Wan X, Ashaolu TJ, Sun MC, Zhao C. A Review of Food Bioactives That Can Modulate miRNA Profiles for Management of Colorectal Cancer. Foods 2025; 14:1352. [PMID: 40282754 PMCID: PMC12027151 DOI: 10.3390/foods14081352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC), the third leading cause of cancer globally, with high mortality, necessitates more effective treatments and adjunct therapies. MicroRNAs (miRNAs), short non-coding RNAs, regulate gene expression. Food-derived active components have the potential to modulate CRC cellular processes, aiding in the prevention and management of CRC. This review explores the role of miRNAs in CRC and summarizes the anti-inflammatory, antioxidant, and pro-apoptotic effects of typical food bioactive components by modulating specific miRNAs. We investigate the potential and scientific basis of regulating miRNA expression through dietary therapy and preventive approaches, providing new directions for CRC treatment. Collectively, miRNAs regulate gene expression, impacting the onset, progression, metastasis, and treatment response of CRC. Food components such as curcumin and resveratrol modulate specific miRNAs, affecting CRC cell behavior. Bioactive food components influence CRC cell proliferation, apoptosis, and drug sensitivity by regulating key proteins and pathways.
Collapse
Affiliation(s)
- Xiaoqin Wan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam
| | - Mao-Cheng Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
30
|
Soleimani Mamalo A, Pashaei M, Valilo M, Ojarudi M. Cytokine-mediated regulation of immune cell metabolic pathways in the tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04133-8. [PMID: 40220026 DOI: 10.1007/s00210-025-04133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Cancer, an important global health problem, is defined by aberrant cell proliferation and continues to be the main cause of death globally. The tumor microenvironment (TME) plays an essential role in the development of cancer, resistance to therapy, and regulation of the immune response. Some immune cells in the TME, like T cells, B cells, macrophages, dendritic cells, and natural killer cells, can either stop or help tumor growth, depending on how metabolic and cytokine changes happen. Cytokines function as essential signaling molecules that modulate immune cell metabolism, altering their functionality. This review focuses on how cytokine-mediated metabolic reprogramming affects the activity of immune cells inside the TME, which can either make the immune response stronger or weaker. New ways of treating cancer that focus on metabolic pathways and cytokine signaling, such as using IL (Interleukin) - 15, IL- 10, and IL- 4, show promise in boosting immune cell activity and making cancer treatments more effective. Finding these pathways could lead to new ways to treat cancer with immunotherapy that focus on metabolic competition and immune resistance in the TME.
Collapse
Affiliation(s)
| | - Mohammadreza Pashaei
- Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
31
|
Dong M, Zhang N. Laminin α5: a key factor in tumor metastasis. Clin Exp Metastasis 2025; 42:24. [PMID: 40214832 DOI: 10.1007/s10585-025-10341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/24/2025] [Indexed: 06/11/2025]
Abstract
Tumor metastasis involves the spread of tumor cells from the primary site to distant organs via the lymphatic system, blood vessels, and other pathways. It stands as a major contributor to cancer incidence and mortality. Laminin α5 (LMα5) is a member of the laminin family, which is widely expressed in various tumor tissues and is significantly associated with poor cancer prognosis. Laminin α5 plays an important role in cancer metastasis, serving as a key regulator in this process. LMα5 facilitates tumor metastasis through its interactions with various receptors, including integrins and Lutheran/basal cell adhesion molecules (Lu/BCAM). Moreover, it modulates the epithelial-mesenchymal transition (EMT) by influencing the Notch signaling pathway, thus regulating the invasive capabilities of tumor cells. By mediating the interplay between tumors and their microenvironment, LMα5 disrupts the adhesion of tumor cells to vascular endothelial cells, consequently reducing metastatic tumor growth. In this review, we have discussed the core mechanisms of action underlying the role of LMα5 in tumor metastasis and its therapeutic potential. By shedding light on novel therapeutic targets and treatment strategies, the aim is to combat cancer metastasis and improve the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Meiqi Dong
- Cancer Hospital of China Medical University, Shenyang, 110042, Liaoning, People's Republic of China
- Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, People's Republic of China
- China Medical University, Shenyang, 110042, Liaoning, People's Republic of China
| | - Na Zhang
- Cancer Hospital of China Medical University, Shenyang, 110042, Liaoning, People's Republic of China.
- Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, People's Republic of China.
| |
Collapse
|
32
|
Dong H, Ye C, Ye X, Yan J, Ye G, Shao Y. The biological role and molecular mechanism of transfer RNA-derived small RNAs in tumor metastasis. Front Oncol 2025; 15:1560943. [PMID: 40265011 PMCID: PMC12011605 DOI: 10.3389/fonc.2025.1560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Tumor metastasis is a significant contributor to increased cancer mortality. Transfer RNA-derived small RNAs (tsRNAs), a class of endogenous non-coding RNA molecules, play crucial functional roles in various physiological processes, including the regulation of transcription and reverse transcription, the modulation of translation processes, the modification of epigenetic inheritance, the regulation of the cell cycle, etc. Dysregulated tsRNAs are closely related to the occurrence and progression of human malignancies. Accumulating evidence indicates that the abnormal expression of tsRNAs is associated with tumor metastasis through a variety of mechanisms. Hence, we summarize the fundamental structure and biological functions of tsRNAs, with a focus on how tsRNAs influence the tumor metastasis process through downstream targets or the regulation of interactions between upstream and downstream molecules, thereby providing a novel perspective for targeted therapy for tumor metastasis.
Collapse
Affiliation(s)
- Haotian Dong
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chengyuan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiaohan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
33
|
Chang X, Huang Y, Qu Y, Guo Y, Fan W, Zhen H. Integrative analysis of mitochondrial-related gene profiling identifies prognostic clusters and drug resistance mechanisms in low-grade glioma. Discov Oncol 2025; 16:465. [PMID: 40186003 PMCID: PMC11971116 DOI: 10.1007/s12672-025-02201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Mitochondrial dysfunction has emerged as a critical factor in the progression and prognosis of low-grade glioma (LGG). In this study, we explored the role of mitochondrial-related genes through consensus clustering analysis using multi-omics data from the TCGA, CGGA, and other independent datasets. Patients were categorized into three clusters (Cluster A, B, and C), with Cluster B consistently associated with poorer prognosis. Mutation landscape analysis revealed distinct genetic alterations and copy number variations among clusters, particularly in Cluster B, which exhibited unique genetic signatures. Immune infiltration analysis showed that Cluster B had higher expression levels of immune checkpoint genes, stronger immune evasion activity, and greater immune cell infiltration, suggesting an immunosuppressive tumor microenvironment. Furthermore, we identified mitochondrial-related prognostic markers and developed a MITscore based on gene expression patterns, which stratified patients into high- and low-risk groups. High MITscore groups displayed stronger stemness characteristics, poorer survival outcomes, and differential responses to chemotherapy and immunotherapy. Cross-validation with drug sensitivity and immunotherapy cohorts indicated that high MITscore patients were more sensitive to certain chemotherapeutic agents and responded better to immunotherapy. Finally, using the SRGA method, we identified novel biomarkers (KDR, LRRK2, SQSTM1) closely associated with mitochondrial function, which may serve as potential targets for therapeutic intervention. These findings highlight the critical role of mitochondrial dysfunction in LGG prognosis, tumor microenvironment regulation, and treatment response, providing new avenues for precision oncology.
Collapse
Affiliation(s)
- Xiaozan Chang
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China
| | - Yingxuan Huang
- Pediatric Intensive Care Unit, The Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Baise, China
| | - Ying Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Guo
- Nanfang Hospital (ZengCheng Branch), Southern Medical University, No. 28, Innovation Avenue, Ningxi Street, Guangzhou, China.
| | - Wenwen Fan
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Nanli, Panjiayuan, Beijing, 100021, China.
| | - Haining Zhen
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
34
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
35
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
36
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
37
|
Mandloi S, Gargano SM, Duffy AN, Benedict PA, Shing SR, Kahn C, Hannikainen P, Pineda-Reyes JP, Bray D, Toskala EM, Rabinowitz M, Rosen M, Farrell C, Evans JJ, Nyquist GG. The Presence of Pigment Incontinence in Sinonasal Mucosal Melanoma. Laryngoscope 2025; 135:1321-1325. [PMID: 39543905 DOI: 10.1002/lary.31901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Regression is an immunological phenomenon described in cutaneous melanoma whereby tumor is replaced with tumor-infiltrating lymphocytes, granulation tissue, and mature fibroblasts often accompanied by pigment incontinence (accumulation of melanin in the upper dermis). Pigment incontinence results in grossly pigmented lesions that may be mistaken for viable tumor and has not been described in sinonasal mucosal melanoma (SNMM). This study investigates the presence of regression and pigment incontinence in patients with SNMM. METHODS A retrospective chart review was conducted on SNMM patients from 2007 to 2023. Pathology slides from surgical resection were examined by two pathologists blinded to treatment information for the presence and extent of pigment-laden macrophages and other histopathologic features of regression. RESULTS Seventeen patients with SNMM were included in this study who underwent surgical resection. Three patients received neoadjuvant therapy followed by surgical resection. Regression was present in 94% of patients and pigment incontinence was present in 65% of patients and occurred in both neoadjuvant treated patients and treatment naïve patients. All three patients with neoadjuvant treatment had evidence of pigment incontinence. DISCUSSION This study highlights that SNMM often displays characteristics of regression. This study is one of the first to describe the presence of pigment incontinence in patients with SNMM. Pigment incontinence can be a part of the natural tumor life cycle and grossly pigmented lesions could easily be confused for melanoma especially after neoadjuvant therapy. Developing an understanding of regression and pigment incontinence within SNMM is important for diagnosis and clinical management. LEVEL OF EVIDENCE 4 Laryngoscope, 135:1321-1325, 2025.
Collapse
Affiliation(s)
- Shreya Mandloi
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | | | - Alexander N Duffy
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Peter A Benedict
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Samuel R Shing
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Chase Kahn
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Paavali Hannikainen
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Juan Pablo Pineda-Reyes
- Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - David Bray
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Elina M Toskala
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Mindy Rabinowitz
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Marc Rosen
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Christopher Farrell
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - James J Evans
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Gurston G Nyquist
- Department of Otolaryngology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Lugovoi ME, Karshieva SS, Usatova VS, Voznyuk AA, Zakharova VA, Levin AA, Petrov SV, Senatov FS, Mironov VA, Belousov VV, Koudan EV. The design of the spheroids-based in vitro tumor model determines its biomimetic properties. BIOMATERIALS ADVANCES 2025; 169:214178. [PMID: 39799900 DOI: 10.1016/j.bioadv.2025.214178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Cancer, one of the world's deadliest diseases, is expected to claim an estimated 16 million lives by 2040. Three-dimensional (3D) models of cancer have become invaluable tools for the study of tumor biology and the development of new therapies. The tumor microenvironment (TME) is a determinant of tumor progression and has implications for clinical therapies. Cancer-associated fibroblasts (CAFs) are one of the most important components of the TME. Modeling the interactions between cancer cells and CAFs in vitro can help to create biomimetic tumor equivalents for elucidating the causes of cancer growth and assessing the effectiveness of therapies. Here, we are investigated the effect of the mutual arrangement of tumor cells and fibroblasts on the formation of tumor models and their biomimetic properties. Pancreatic tumor models of three different designs were formed by the bioprinting method. Gelatin-alginate hydrogels with and without PANC-1 (pancreatic cancer) and NIH/3 T3 (mouse fibroblasts) cells, as well as their homo- and heterospheroids, were used as bioink. To enable bioprinting, we have chosen the most suitable compositions of alginate and gelatin that provide both good printability and cell proliferation activity. We also have investigated the kinetics of spheroid formation to identify the optimal cultivation parameters for achieving spheroid sizes suitable for bioprinting. All tumor models remained viable for 3-4 weeks. At the same time, the patterns of model development in the cultivation process and the biomimetic properties of the final tissue-engineered structures depended on the model design.
Collapse
Affiliation(s)
- Maksim E Lugovoi
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Saida Sh Karshieva
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Veronika S Usatova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Amina A Voznyuk
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Vasilina A Zakharova
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Aleksandr A Levin
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Stanislav V Petrov
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Fedor S Senatov
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Vladimir A Mironov
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, 119049, Leninskiy pr. 4, Moscow, Russia.
| |
Collapse
|
39
|
Guo Z, Li K, Ren X, Wang X, Yang D, Ma S, Zeng X, Zhang P. The role of the tumor microenvironment in HNSCC resistance and targeted therapy. Front Immunol 2025; 16:1554835. [PMID: 40236700 PMCID: PMC11996806 DOI: 10.3389/fimmu.2025.1554835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
The prognosis for head and neck squamous cell carcinoma (HNSCC) remains unfavorable, primarily due to significant therapeutic resistance and the absence effective interventions. A major obstacle in cancer treatment is the persistent resistance of cancer cells to a variety of therapeutic modalities. The tumor microenvironment (TME) which includes encompasses all non-malignant components and their metabolites within the tumor tissue, plays a crucial role in this context. The distinct characteristics of the HNSCC TME facilitate tumor growth, invasion, metastasis, and resistance to treatment. This review provides a comprehensive overview of the HNSCC TME components, with a particular focus on tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), the extracellular matrix, reprogrammed metabolic processes, and metabolic products. It elucidates their contributions to modulating resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy in HNSCC, and explores novel therapeutic strategies targeting the TME for HNSCC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
41
|
Karimi S, Bakhshali R, Bolandi S, Zahed Z, Mojtaba Zadeh SS, Kaveh Zenjanab M, Jahanban Esfahlan R. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater Today Bio 2025; 31:101626. [PMID: 40124335 PMCID: PMC11926801 DOI: 10.1016/j.mtbio.2025.101626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is challenged by the tumor microenvironment (TME), which promotes drug resistance and cancer cell growth. This review offers a comprehensive and innovative perspective on how nanomedicine can modify the TME to enhance therapy. Strategies include using nanoparticles to improve oxygenation, adjust acidity, and alter the extracellular matrix, making treatments more effective. Additionally, nanoparticles can enhance immune responses by activating immune cells and reducing suppression within tumors. By integrating these approaches with existing therapies, such as chemotherapy and radiotherapy, nanoparticles show promise in overcoming traditional treatment barriers. The review discusses how changes in the TME can enhance the effectiveness of nanomedicine itself, creating a reciprocal relationship that boosts overall efficacy. We also highlight novel strategies aimed at exploiting and overcoming the TME, leveraging nanoparticle-based approaches for targeted cancer therapy through precise TME modulation.
Collapse
Affiliation(s)
- Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Ravi K, Zhang Y, Sakala L, Manoharan TJM, Pockaj B, LaBaer J, Park JG, Nikkhah M. Tumor Microenvironment On-A-Chip and Single-Cell Analysis Reveal Synergistic Stromal-Immune Crosstalk on Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413457. [PMID: 40056038 PMCID: PMC12021108 DOI: 10.1002/advs.202413457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/11/2025] [Indexed: 04/26/2025]
Abstract
Solid tumors develop within a complex environment called the tumor microenvironment (TME), which is sculpted by the presence of other cells, such as cancer-associated fibroblasts (CAFs) and immune cells like macrophages (Mφs). Despite the presence of immune cells, tumor cells orchestrate a tumor-supportive environment through intricate interaction with the components of the TME. However, the specific mechanism by which this intercellular dialogue is regulated is not fully understood. To that end, the development of an organotypic 3D breast TME-on-a-chip (TMEC) model, integrated with single-cell RNA sequencing analysis, is reported to mechanistically evaluate the progression of triple-negative breast cancer (TNBC) cells in the presence of patient-derived CAFs and Mφs. Extensive functional assays, including invasion and morphometric characterization, reveal the synergistic influence of CAFs and Mφs on tumor cells. Furthermore, gene expression and pathway enrichment analyses identify the involvement of the KYNU gene, suggesting a potential immune evasion mechanism through the kynurenine pathway. Lastly, the pharmacological targeting of the identified pathway is investigated.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE)Arizona State UniversityTempeAZ85287USA
| | - Yining Zhang
- Biodesign Virginia G. Piper Center for Personalized DiagnosticsArizona State UniversityTempeAZ85287USA
| | - Lydia Sakala
- Biodesign Virginia G. Piper Center for Personalized DiagnosticsArizona State UniversityTempeAZ85287USA
| | | | | | - Joshua LaBaer
- Biodesign Virginia G. Piper Center for Personalized DiagnosticsArizona State UniversityTempeAZ85287USA
| | - Jin G. Park
- Biodesign Virginia G. Piper Center for Personalized DiagnosticsArizona State UniversityTempeAZ85287USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE)Arizona State UniversityTempeAZ85287USA
- Biodesign Virginia G. Piper Center for Personalized DiagnosticsArizona State UniversityTempeAZ85287USA
| |
Collapse
|
43
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
44
|
Chen Y, Zhang Z, Ji K, Zhang Q, Qian L, Yang C. Role of microplastics in the tumor microenvironment (Review). Oncol Lett 2025; 29:193. [PMID: 40041410 PMCID: PMC11877014 DOI: 10.3892/ol.2025.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 03/06/2025] Open
Abstract
Microplastics (MPs) are pervasive in several ecosystems and have the potential to infiltrate multiple aspects of human life through ingestion, inhalation and dermal exposure, thus eliciting substantial concerns regarding their potential implications for human health. Whilst initial research has documented the effects of MPs on disease development across multiple physiological systems, MPs may also facilitate tumor progression by influencing the tumor microenvironment (TME). This evolving focus underscores the growing interest in the role of MPs in tumorigenesis and their interactions within the TME. In the present review, the relationship between MPs and the TME is comprehensively assessed, providing a detailed analysis of their interactions with tumor cells, stromal cells (including macrophages, fibroblasts and endothelial cells), the extracellular matrix and inflammatory processes. Recommendations for future research directions and strategies to address and reduce microplastic pollution are proposed.
Collapse
Affiliation(s)
- Yunjie Chen
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zihang Zhang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kangming Ji
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lijun Qian
- Department of Geriatric Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chuang Yang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
45
|
Shang A, Yu P, Li L, He G, Xu J. Tumor‑stroma ratio as a clinical prognostic factor in colorectal carcinoma: A meta‑analysis of 7,934 patients. Oncol Lett 2025; 29:190. [PMID: 40041409 PMCID: PMC11877013 DOI: 10.3892/ol.2025.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
The tumor-stroma ratio (TSR) has been regarded as an important factor associated with tumor metastasis, based on the 'seed and soil' theory, which may have guiding significance for the selection of chemotherapy regimens. Therefore, a high TSR may be a new risk factor for tumor recurrence in patients with stage II colorectal cancer (CRC). The present study aimed to evaluate the prognostic value of TSR in CRC, especially for the computer-calculated TSR. A comprehensive literature retrieval was performed using the PubMed, Web of Science, Embase and Cochrane Library databases to identify relevant studies published up to December 13, 2023. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to estimate the prognostic value of the TSR in CRC. A total of 21 studies published between 2007 and 2023 were included in the present meta-analysis. The combined analysis demonstrated that a high TSR was significantly associated with worse overall survival (OS; HR=1.84; 95% CI, 1.44-2.34; P<0.001), disease-free survival (DFS; HR=1.85; 95% CI, 1.27-2.68; P<0.001), cancer-specific survival (CSS; H=1.97; 95% CI, 1.46-2.65; P<0.001) and recurrence free survival (RFS; HR=1.55; 95% CI, 1.25-1.92; P<0.001) in patients with CRC. Moreover, an elevated computer-calculated TSR was also associated with poor OS (HR=1.89; 95% CI, 1.48-2.40; P<0.001) and DFS (HR=1.85; 95% CI, 1.27-2.68; P<0.001). However, a high TSR was not associated with poor OS in patients with stage I CRC (HR=1.01; 95% CI, 0.48-2.14; P=0.97). In conclusion, the results of the present meta-analysis indicate that a high TSR is associated with poor OS, DFS, CSS and RFS in patients with CRC, especially for those with stage II-III. In addition, TSR calculated by computer using whole-slide images may also be an effective prognostic marker for OS and DFS in patients with CRC.
Collapse
Affiliation(s)
- An Shang
- Department of General Surgery, The Fourth Hospital of Guangxi Medical University, Liuzhou, Guangxi 545007, P.R. China
| | - Pengcheng Yu
- Department of General Surgery, The Fourth Hospital of Guangxi Medical University, Liuzhou, Guangxi 545007, P.R. China
| | - Liping Li
- Department of Pneumology, The Fourth Hospital of Guangxi Medical University, Liuzhou, Guangxi 545007, P.R. China
| | - Ge He
- Department of General Surgery, The Fourth Hospital of Guangxi Medical University, Liuzhou, Guangxi 545007, P.R. China
| | - Junyi Xu
- Department of General Surgery, The Fourth Hospital of Guangxi Medical University, Liuzhou, Guangxi 545007, P.R. China
| |
Collapse
|
46
|
Yang S, Xu X, Wang M, Ma Q, Feng C, Wang J, Zhang Y, Song Y. Gel-to-Coacervate Transition in Peptide/HA Complexes for MMP-9-Activated Penetration into Tumor Spheroids. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18108-18115. [PMID: 40088140 DOI: 10.1021/acsami.4c23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Short phase-separating peptides serve as liquid-based vehicles due to their remarkable fluidity and cell permeability, holding great promise in diffusion-limited applications such as intracellular drug delivery or penetration into deep-seated tumors. However, tuning the phase stability and the phase-transition sensitivity of these coacervates in response to specific pathological signals remains a significant challenge. To tackle this challenge, this study presents a phase-separating peptide/hyaluronic acid (HA) complex coacervate system, which undergoes a solid-to-coacervate transition upon exposure to matrix metalloproteinase 9 (MMP-9). By harnessing this disease-relevant enzyme, overexpressed in the ovarian tumor microenvironment, we further demonstrate the improved infiltration of the coacervates into Hey cells and tumor spheroids. These observations highlight the feasibility of modulating phase behaviors and advanced functions of coacervates through sequence-specific monomer design, offering a practical strategy for the on-target delivery of coacervates and medicine into tumors.
Collapse
Affiliation(s)
- Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuli Xu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meixin Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Wang
- Shanghai Key Laboratory of Embryo Original Diseases and Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yage Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Alenezi A, Alhamad H, Alenezi A, Khan MU. Hypoxia Imaging in Lung Cancer: A PET-Based Narrative Review for Clinicians and Researchers. Pharmaceuticals (Basel) 2025; 18:459. [PMID: 40283896 PMCID: PMC12030053 DOI: 10.3390/ph18040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Hypoxia plays a critical role in lung cancer progression and treatment resistance by contributing to aggressive tumor behavior and poor therapeutic response. Molecular imaging, particularly positron emission tomography (PET), has become an essential tool for noninvasive hypoxia detection, providing valuable insights into tumor biology and aiding in personalized treatment strategies. Objective: This narrative review explores recent advancements in PET imaging for detecting hypoxia in lung cancer, with a focus on the development, characteristics, and clinical applications of various radiotracers. Findings: Numerous PET-based hypoxia radiotracers have been investigated, each with distinct pharmacokinetics and imaging capabilities. Established tracers such as 18F-Fluoromisonidazole (18F-FMISO) remain widely used, while newer alternatives like 18F-Fluoroazomycin Arabinoside (18F-FAZA) and 18F-Flortanidazole (18F-HX4) demonstrate improved clearance and image contrast. Additionally, 64Cu-ATSM has gained attention for its rapid tumor uptake and hypoxia selectivity. The integration of PET with hybrid imaging modalities, such as PET/CT and PET/MRI, enhances the spatial resolution and functional interpretation, making hypoxia imaging a promising approach for guiding radiotherapy, chemotherapy, and targeted therapies. Conclusions: PET imaging of hypoxia offers significant potential in lung cancer diagnosis, treatment planning, and therapeutic response assessment. However, challenges remain, including tracer specificity, quantification variability, and standardization of imaging protocols. Future research should focus on developing next-generation radiotracers with enhanced specificity, optimizing imaging methodologies, and leveraging multimodal approaches to improve clinical utility and patient outcomes.
Collapse
Affiliation(s)
- Ahmad Alenezi
- Radiologic Sciences Department, Kuwait University, Kuwait City 31470, Kuwait
| | - Hamad Alhamad
- Occupational Therapy Department, Kuwait University, Jabriya 31470, Kuwait
| | - Aishah Alenezi
- Radiologic Sciences Department, Kuwait University, Kuwait City 31470, Kuwait
| | - Muhammad Umar Khan
- Nuclear Medicine Department, Jahra Hospital, Ministry of Health, Al Jahra 03200, Kuwait
| |
Collapse
|
48
|
Wen L, Wang P, Zhang G, Ma Y, Li J, Chen D, Liu L, Hu H, Huang C, Yao X. Prognostic and Immunological Significance of NMNAT1 in Colorectal and Pan-Cancer Contexts. Onco Targets Ther 2025; 18:389-410. [PMID: 40160196 PMCID: PMC11954486 DOI: 10.2147/ott.s504668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Nicotinamide plays a critical role in the prevention and treatment of tumors, and its metabolism is closely associated with tumor progression. The aim of this study was to understand the prognostic and immunological significance of nicotinamide metabolism-related genes in pan-cancer. Methods We downloaded The Cancer Genome Atlas and Genotype Tissue Expression pan-cancer datasets for NMNAT1 from the UCSC database. We analyzed the differential expression, prognosis, genetic alterations, DNA methylation, immune infiltration, and co-expression with RNA modification-related genes and immune checkpoint-related genes. Genes with expression patterns similar to NMNAT1 were identified using the GEPIA library. The GSCA database was used to investigate the correlation between gene expression and drug sensitivity, as assessed by GDSC and CTRP. The CancerSEA database was employed to examine the association of NMNAT1 expression at the single-cell level across different tumors and its relation to 14 functional states. Immunohistochemistry was performed to assess the clinical significance of NMNAT1 expression. Results NMNAT1 exhibited differential expression across 25 tumor types, including colorectal cancer (CRC), and its expression was significantly associated with the prognosis of 11 tumors. Furthermore, NMNAT1 expression correlated significantly with clinicopathological features. NMNAT1 was strongly associated with immune cells, RNA modification-related genes, and immune checkpoint-related genes in most tumors, affecting immune responses. The expression of NMNAT1 also correlated with sensitivity and resistance to several drugs. Single-cell analysis revealed that NMNAT1 is involved in the progression of retinoblastoma, uveal melanoma, and CRC. Immunohistochemical analysis confirmed that NMNAT1 expression is an independent prognostic factor in patients with CRC. Conclusion NMNAT1 is a crucial prognostic and immune marker gene for nicotinamide metabolism, particularly in CRC. It has potential as a clinical biomarker and a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Liang Wen
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Ping Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Guosheng Zhang
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
| | - Yongli Ma
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jinghui Li
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Dengzhuo Chen
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Linfeng Liu
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Hongkai Hu
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Xueqing Yao
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
49
|
Zhang C, Song Y, Yang H, Wu K. Myeloid cells are involved in tumor immunity, metastasis and metabolism in tumor microenvironment. Cell Biol Toxicol 2025; 41:62. [PMID: 40131539 PMCID: PMC11937113 DOI: 10.1007/s10565-025-10012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Bone marrow-derived cells in the tumor microenvironment, including macrophages, neutrophils, dendritic cells, myeloid-derived suppressor cells, eosinophils and basophils, participate in the generation, development, invasion and metastasis of tumors by producing different cytokines and interacting with other cell types, and play a pro-tumor or anti-tumor role in regulating tumor immunity. Due to the complexity of cell types in the tumor microenvironment and the unknown process of tumor development and metastasis, cancer treatment to achieve better survival status remains challenging. In this article, we summarize the effects of myeloid cells in tumor microenvironment on tumor immunity, cancer migration, and crosstalk with metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism), which will help to further study the tumor microenvironment and seek targeted therapeutic strategies for patients.
Collapse
Affiliation(s)
- Chenbo Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ying Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Huanming Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Kui Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- BGI Genomics, Harbin, 150023, Heilongjiang, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
50
|
Dandeu LNR, Lachovsky J, Sidlik S, Marenco P, Orschanski D, Aguilera P, Vázquez M, Carballo MDP, Fernández E, Penas-Steinhardt A, Chasseing NA, Labovsky V. Relevance of oncobiome in breast cancer evolution in an Argentine cohort. mSphere 2025; 10:e0059724. [PMID: 39927763 PMCID: PMC11934308 DOI: 10.1128/msphere.00597-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/12/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide, with about 20,000 cases annually in Argentina. While age, diet, and genetics are known risk factors, most breast cancer cases have unknown causes, necessitating the discovery of new risk factors. The aim of this study was the analysis of the prognostic relevance of the oncobiome in Argentinean breast cancer patients. Sequencing of the V4 region 16S rRNA gene was performed on 34 primary breast tumor samples, using bioinformatic and statistical analyses to identify bacteria and hypothetical pathways. Each sample presented a unique microbial profile, with Proteobacteria being the most abundant phylum. Tumors >2 cm showed greater alpha diversity with increased nucleotide biosynthesis. Moreover, progesterone-receptor tumors showed differences in beta diversity, being progesterone receptor-positive tumors that had the highest expression of Acinetobacter and Moraxella. In disease progression, the phylum Chloroflexi was prevalent in tumors of surviving patients. Acinetobacter and Cloacibacterium genera were significantly higher in patients without events and those without metastasis. We found that nucleotide and cell-structure biosynthesis, and lipid metabolism pathways were enriched in tumors with poor progression, whereas amino-acid degradation was increased in tumors of surviving patients. This finding is an indication that tumor cells are taking advantage of this effect of the microbiome during tumor progression. We conclude that oncobiome is dysbiotic in these patients, with distinct patterns in those with poor progression. Suggesting a link between the oncobiome and cancer progression, paving the way for new therapies to improve patient quality of life and survival. IMPORTANCE This is the first study to investigate the relevance of the oncobiome in the evolution of breast cancer in a cohort of Argentine patients. It also highlights the need for further research in this area to improve our understanding of the role of the microbiome in this disease and potentially identify new therapeutic targets or prognostic indicators. Understanding the complex interaction between the microbiome, the tumor microenvironment, and the pathogenesis of breast cancer holds the promise of more personalized and effective treatment approaches in the future.
Collapse
Affiliation(s)
- Leonardo Néstor Rubén Dandeu
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Joel Lachovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Sidlik
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Marenco
- Instituto de Oncología Ángel H Roffo, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Pablo Aguilera
- Departamento de Ciencias Aplicadas y Tecnología, Universidad Nacional de Moreno, Moreno, Argentina
| | | | | | - Elmer Fernández
- Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Alberto Penas-Steinhardt
- Departamento de Ciencias Básicas, Laboratorio de Genómica Computacional (GEC-UNLu), Universidad Nacional de Luján, Luján, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|