1
|
Jeong J, Yang Y, Song MS, Won HY, Han AT, Kim S. High-Resolution Melting (HRM) analysis of DNA methylation using semiconductor chip-based digital PCR. Genes Genomics 2024; 46:909-915. [PMID: 38849705 DOI: 10.1007/s13258-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Digital PCR (dPCR) technology allows absolute quantification and detection of disease-associated rare variants, and thus the use of dPCR technology has been increasing in clinical research and diagnostics. The high-resolution melting curve analysis (HRM) of qPCR is widely used to distinguish true positives from false positives and detect rare variants. In particular, qPCR-HRM is commonly used for methylation assessment in research and diagnostics due to its simplicity and high reproducibility. Most dPCR instruments have limited fluorescence channels available and separate heating and imaging systems. Therefore, it is difficult to perform HRM analysis using dPCR instruments. OBJECTIVE A new digital real-time PCR instrument (LOAA) has been recently developed to integrate partitioning, thermocycling, and imaging in a single dPCR instrument. In addition, a new technique to perform HRM analysis is utilized in LOAA. The aim of the present study is to evaluate the efficiency and accuracy of LOAA dPCR on HRM analysis for the detection of methylation. METHODS In this study, comprehensive comparison with Bio-Rad qRT-PCR and droplet-based dPCR equipment was performed to verify the HRM analysis-based methylation detection efficiency of the LOAA digital PCR equipment. Here, sodium bisulfite modification method was applied to detect methylated DNA sequences by each PCR method. RESULTS Melting curve analysis detected four different Tm values using LOAA and qPCR, and found that LOAA, unlike qPCR, successfully distinguished between different Tm values when the Tm values were very similar. In addition, melting temperatures increased by each methylation were about 0.5℃ for qPCR and about 0.2 ~ 0.6℃ for LOAA. The melting temperature analyses of methylated and unmethylated DNA samples were conducted using LOAA dPCR with TaqMan probes and EvaGreen, and the result found that Tm values of methylated DNA samples are higher than those of unmethylated DNA samples. CONCLUSION The present study shows that LOAA dPCR could detect different melting temperatures according to methylation status of target sequences, indicating that LOAA dPCR would be useful for diagnostic applications that require the accurate quantification and assessment of DNA methylation.
Collapse
Affiliation(s)
- Jinuk Jeong
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yongsu Yang
- Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min-Sik Song
- BIO Institute, OPTOLANE Technologies Inc, Seongnam, South Korea
| | - Hee-Young Won
- BIO Institute, OPTOLANE Technologies Inc, Seongnam, South Korea
| | - Andrew T Han
- BIO Institute, OPTOLANE Technologies Inc, Seongnam, South Korea
| | - Songmi Kim
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
2
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
3
|
De Plano LM, Saitta A, Oddo S, Caccamo A. Epigenetic Changes in Alzheimer's Disease: DNA Methylation and Histone Modification. Cells 2024; 13:719. [PMID: 38667333 PMCID: PMC11049073 DOI: 10.3390/cells13080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss, imposing a significant burden on affected individuals and their families. Despite the recent promising progress in therapeutic approaches, more needs to be done to understand the intricate molecular mechanisms underlying the development and progression of AD. Growing evidence points to epigenetic changes as playing a pivotal role in the pathogenesis of the disease. The dynamic interplay between genetic and environmental factors influences the epigenetic landscape in AD, altering gene expression patterns associated with key pathological events associated with disease pathogenesis. To this end, epigenetic alterations not only impact the expression of genes implicated in AD pathogenesis but also contribute to the dysregulation of crucial cellular processes, including synaptic plasticity, neuroinflammation, and oxidative stress. Understanding the complex epigenetic mechanisms in AD provides new avenues for therapeutic interventions. This review comprehensively examines the role of DNA methylation and histone modifications in the context of AD. It aims to contribute to a deeper understanding of AD pathogenesis and facilitate the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (S.O.)
| | | | | | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (S.O.)
| |
Collapse
|
4
|
Arai K, Qi H, Inoue-Murayama M. Age estimation of captive Asian elephants (Elephas maximus) based on DNA methylation: An exploratory analysis using methylation-sensitive high-resolution melting (MS-HRM). PLoS One 2023; 18:e0294994. [PMID: 38079426 PMCID: PMC10712859 DOI: 10.1371/journal.pone.0294994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Age is an important parameter for bettering the understanding of biodemographic trends-development, survival, reproduction and environmental effects-critical for conservation. However, current age estimation methods are challenging to apply to many species, and no standardised technique has been adopted yet. This study examined the potential use of methylation-sensitive high-resolution melting (MS-HRM), a labour-, time-, and cost-effective method to estimate chronological age from DNA methylation in Asian elephants (Elephas maximus). The objective of this study was to investigate the accuracy and validation of MS-HRM use for age determination in long-lived species, such as Asian elephants. The average lifespan of Asian elephants is between 50-70 years but some have been known to survive for more than 80 years. DNA was extracted from 53 blood samples of captive Asian elephants across 11 zoos in Japan, with known ages ranging from a few months to 65 years. Methylation rates of two candidate age-related epigenetic genes, RALYL and TET2, were significantly correlated with chronological age. Finally, we established a linear, unisex age estimation model with a mean absolute error (MAE) of 7.36 years. This exploratory study suggests an avenue to further explore MS-HRM as an alternative method to estimate the chronological age of Asian elephants.
Collapse
Affiliation(s)
- Kana Arai
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Huiyuan Qi
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
5
|
Zhang L, Li J. Unlocking the secrets: the power of methylation-based cfDNA detection of tissue damage in organ systems. Clin Epigenetics 2023; 15:168. [PMID: 37858233 PMCID: PMC10588141 DOI: 10.1186/s13148-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change in response to tissue damage. These assays have potential applications in early detection, monitoring disease progression, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the bloodstream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, including DNA methylation patterns, can provide insights into the extent of tissue and organ damage. CONTENT Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underlying DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identifying specific methylation markers associated with tissue and organ damage for clinical trials. This review will explore the mechanisms and current state of research on cfDNA methylation-based assay detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
Collapse
Affiliation(s)
- Lijing Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Zhou H, Nie C, Tian W, Han X, Wang J, Du X, Wang Q, Zhu X, Xiang G, Zhao Y. Joint Effects Between CDKN2B/P15 Methylation and Environmental Factors on the Susceptibility to Gastric Cancer. Dig Dis Sci 2023:10.1007/s10620-023-07917-1. [PMID: 36961670 DOI: 10.1007/s10620-023-07917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/14/2022] [Indexed: 03/25/2023]
Abstract
BACKGROUND The incidence of gastric cancer has long been at a high level in China, seriously affecting the health of Chinese people. AIMS This case‒control study was performed to identify gene methylation biomarkers of gastric cancer susceptibility. METHODS A total of 393 gastric cancer cases and 397 controls were included in this study. Gene methylation in peripheral blood leukocytes was detected by a methylation-sensitive high-resolution melting method, and the Helicobacter pylori antibody presence was semi-quantified in serum by ELISA. RESULTS Individuals with total methylation of CDKN2B/P15 had a 1.883-fold (95%CI: 1.166-3.040, P = 0.010) risk of gastric cancer compared with unmethylated individuals. Individuals with both CDKN2B/P15 and NEUROG1 methylation had a higher risk of gastric cancer (OR = 2.147, 95% CI: 1.137-4.073, P = 0.019). The interaction between CDKN2B/P15 and NEUROG1 total methylation on gastric cancer risk was affected by the pattern of adjustment. In addition, the joint effects between CDKN2B/P15 total methylation and environmental factors, such as freshwater fish intake (OR = 6.403, 95% CI = 2.970-13.802, P < 0.001), irregular diet (OR = 5.186, 95% CI = 2.559-10.510, P < 0.001), unsanitary water intake (OR = 2.238, 95% CI = 1.144-4.378, P = 0.019), smoking (OR = 2.421, 95% CI = 1.456-4.026, P = 0.001), alcohol consumption(OR = 2.163, 95% CI = 1.309-3.576, P = 0.003), and garlic intake(OR = 0.373, 95% CI = 0.196-0.709, P = 0.003) on GC risk were observed, respectively. However, CDKN2B/P15 and NEUROG1 total methylation were not associated with gastric cancer prognosis. CONCLUSION CDKN2B/P15 methylation in peripheral blood may be a potential biomarker for evaluating susceptibility to gastric cancer. The joint effects between CDKN2B/P15 methylation and environmental factors may also contribute to gastric cancer susceptibility.
Collapse
Affiliation(s)
- Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Chuang Nie
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xinyu Du
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Qi Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xiaojie Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Guanghui Xiang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
7
|
Influence of Unequal Amplification of Methylated and Non-Methylated Template on Performance of Pyrosequencing. Genes (Basel) 2022; 13:genes13081418. [PMID: 36011328 PMCID: PMC9407541 DOI: 10.3390/genes13081418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrosequencing is one of the technologies widely used for quantitative methylation assessment. The protocol of pyrosequencing experiment consists of PCR amplification of a locus of interest and subsequent sequencing via synthesis of the amplified PCR product. As the PCR in this protocol utilizes one primer set for the amplification of a template originating from both methylated and non-methylated versions of the analysed locus, the unequal amplification of one of the templates may affect the methylation level assessment by pyrosequencing. We have investigated whether the unequal amplification of one of the templates challenges the quantitative properties of the pyrosequencing technology. Our results show that the sensitivity and dynamic range of pyrosequencing can be significantly affected by unequal amplification of the methylated and non-methylated version of the locus of interest in an assay specific manner. Thus, the assessment of the effect of unequal template amplification on the performances of the specific pyrosequencing assay is necessary before using the assay either in research or especially in diagnostic settings.
Collapse
|
8
|
Javadmanesh A, Mojtabanezhad Shariatpanahi A, Shams Davodly E, Azghandi M, Yassi M, Heidari M, Kerachian M, Kerachian MA. MS-HRM protocol: a simple and low-cost approach for technical validation of next-generation methylation sequencing data. Mol Genet Genomics 2022; 297:1101-1109. [PMID: 35616708 DOI: 10.1007/s00438-022-01906-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
DNA methylation is a fundamental epigenetic process and have a critical role in many biological processes. The study of DNA methylation at a large scale of genomic levels is widely conducted by several techniques that are next-generation sequencing (NGS)-based methods. Methylome data revealed by DNA methylation next-generation sequencing (mNGS), should be always verified by another technique which they usually have a high cost. In this study, we offered a low-cost approach to corroborate the mNGS data. In this regard, mNGS was performed on 6 colorectal cancer (case group) and 6 healthy individual colon tissue (control group) samples. An R-script detected differentially methylated regions (DMRs), was further validated by high resolution melting (MS-HRM) analysis. After analyzing the data, the algorithm found 194 DMRs. Two locations with the highest level of methylation difference were verified by MS-HRM, which their results were in accordance with the mNGS. Therefore, in the present study, we suggested MS-HRM as a simple, accurate and low-cost method, useful for confirming methylation sequencing results.
Collapse
Affiliation(s)
- Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | | | - Ehsan Shams Davodly
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Maryam Yassi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Mehdi Heidari
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Matin Kerachian
- Faculty of Medicine, McGill University, Montreal, Canada
- Research Institute at McGill University Health Center, Montreal, Canada
| | - Mohammad Amin Kerachian
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
- Cancer Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
9
|
Detection of MSH2 Gene Methylation in Extramammary Paget's Disease by Methylation-Sensitive High-Resolution Melting Analysis. JOURNAL OF ONCOLOGY 2021; 2021:5514426. [PMID: 34759969 PMCID: PMC8575627 DOI: 10.1155/2021/5514426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Background Extramammary Paget's disease (EMPD) is a rare skin tumor. Hypermethylation in the MSH2 promoter resulting in the downregulation of its protein expression shows a high detection rate in EMPD tumor tissue, which indicates that the methylation of MSH2 may play an important role in the pathogenesis of EMPD. Objective This study aims to establish a rapid analysis strategy based on the methylation-sensitive high-resolution melting curve (MS-HRM) to detect the methylation level of the MSH2 promoter. Methods With the use of universal methylated human DNA products, we established the MS-HRM standard curve to quantitatively detect the methylation level of the MSH2 promoter. Then, all 57 EMPD tumor DNA samples were analyzed. Pyrosequencing assay was also carried out to test the accuracy and efficacy of MS-HRM. Besides, a total of 54 human normal and other cancerous tissues were included in this study to test the reliability and versatility of the MS-HRM standard curve. Results In this study, by using the established MS-HRM, we found that 96.5% (55/57) EMPD tumor samples had varying methylation levels in the MSH2 promoter ranging from 0% to 30%. Then, the methylation data were compared to the results obtained from pyrosequencing, which showed a high correlation between these two techniques by Pearson's correlation (r = 0.9425) and Bland–Altman plots (mean difference = −0.1069) indicating that the methylation levels analyzed by MS-HRM were consistent with DNA pyrosequencing. Furthermore, in 23 normal and 31 other cancerous tissue samples, there were two colorectal cancer (CRC) tissues that tested MSH2 methylation positive (1% and 5%) which confirmed that our established MS-HRM can be widely applied to various types of samples. Conclusion MS-HRM standard curve can be used for the detection of the methylation level of MSH2 in EMPD tumor samples and other cancerous tissues potentially, which presents a promising candidate as a quantitative assay to analyze MSH2 promoter methylation in routine pathological procedure.
Collapse
|
10
|
Abstract
The interaction between the gut and its eventual trillions of microbe inhabitants during microbial colonization, represents a critical time period for establishing the overall health and wellbeing of an individual. The gut microbiome represents a diverse community of microbes that are critical for many physiological roles of the host including host metabolism. These processes are controlled by a fine-tuned chemical cross talk between the host and microbiota. Although the exact mechanisms behind this cross talk remains elusive, microbiota induced epigenetic mechanisms like DNA methylation and histone modifications may be key. This review presents our perspective on the epigenome as a mediator for host-microbiota cross talk, as well as methodology to study epigenetics, the role of dysbiosis in disease, and how the gut microbiome-host axis may be used in personal medicine.
Collapse
|
11
|
Liu Y, Huang H, Fu J, Zhang Y, Xu J, Zhang L, Sun S, Zhao L, Zhang D, Onwuka JU, Sun H, Cui B, Zhao Y. Colorectal cancer patients with CASK promotor heterogeneous and homogeneous methylation display different prognosis. Aging (Albany NY) 2020; 12:20561-20586. [PMID: 33113509 PMCID: PMC7655177 DOI: 10.18632/aging.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Homogenous DNA methylation clearly affects clinical outcomes. However, less is known about the effects of heterogeneous methylation. We aimed to investigate the different effects between CASK promoter methylation heterogeneity and homogeneity on colorectal cancer (CRC) patients' prognosis. The methylation status of CASK in 296 tumor tissues and 255 adjacent normal tissues were evaluated using Methylation-sensitive high-resolution melting (MS-HRM). Digital MS-HRM (dMS-HRM) visualized heterogeneous methylation and subsequent sequencing provided exact patterns. Log-rank test and Cox regression model were adopted to assess the association between CASK methylation status and CRC prognosis with propensity score (PS) method to control confounding biases. Heterogeneous methylation was detected in both tumor (52.2%) and non-neoplastic tissue surrounding the tumor (62.4%). It occurred more frequently in lower levels of tumor invasion (P = 0.002) and male patients (P < 0.001). Compared with heterogeneous methylation, patients with CASK homogeneous methylation presented poorer overall survival (OS) (HR: 1.919, 95% CI: 1.146-3.212, P = 0.013) and disease-free survival (DFS) (HR: 1.913, 95% CI: 1.146-3.194, P = 0.013). This unfavorable effect still existed among older (≥ 50), Dukes staging C/D, and rectal cancer patients. MS-HRM and dMS-HRM when combined can assess the degree and complexity of heterogeneous methylation with a visible pattern.
Collapse
Affiliation(s)
- Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Simin Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Liyuan Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Justina Ucheojor Onwuka
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Binbin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| |
Collapse
|
12
|
Xing X, He Z, Wang Z, Mo Z, Chen L, Yang B, Zhang Z, Chen S, Ye L, Zhang R, Zheng Y, Chen W, Li D. Association between H3K36me3 modification and methylation of LINE-1 and MGMT in peripheral blood lymphocytes of PAH-exposed workers. Toxicol Res (Camb) 2020; 9:661-668. [PMID: 33178426 DOI: 10.1093/toxres/tfaa074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 01/24/2023] Open
Abstract
To explore the epigenetic alterations in response to DNA damage following polycyclic aromatic hydrocarbons (PAHs) exposure and the crosstalk between different epigenetic regulations, we examined trimethylated Lys 36 of histone H3 (H3K36me3) and methylation of 'long interspersed element-1 (LINE-1)' and 'O 6-methylguanine-DNA methyltransferase (MGMT)' in peripheral blood lymphocytes (PBLCs) of 173 coke oven workers (PAH-exposed group) and 94 non-exposed workers (control group). The PAH-exposed group showed higher internal PAH exposure level, enhanced DNA damage and increased MGMT expression (all P < 0.001). Notably, the methylation of LINE-1 and MGMT decreased by 3.9 and 40.8%, respectively, while H3K36me3 level was 1.7 times higher in PBLCs of PAH-exposed group compared to control group (all P < 0.001). These three epigenetic marks were significantly associated with DNA damage degree (all P < 0.001) and PAH exposure level in a dose-response manner (all P < 0.001). LINE-1 hypomethylation is correlated with enhanced H3K36me3 modification (β = -0.198, P = 0.002), indicating a synergistic effect between histone modification and DNA methylation at the whole genome level. In addition, MGMT expression was positively correlated with H3K36me3 modification (r = 0.253, P < 0.001), but not negatively correlated with MGMT methylation (r = 0.202, P < 0.05). The in vitro study using human bronchial epithelial cells treated with the organic extract of coke oven emissions confirmed that H3K36me3 is important for MGMT expression following PAH exposure. In summary, our study indicates that histone modification and DNA methylation might have synergistic effects on DNA damage induced by PAH exposure at the whole genome level and H3K36me3 is more essential for MGMT expression during the course.
Collapse
Affiliation(s)
- Xiumei Xing
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhini He
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziying Mo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Boyi Yang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhengbao Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University 38 Dengzhou Road, Qingdao 266021, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
13
|
Kader F, Ghai M, Olaniran AO. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 2019; 134:1-20. [PMID: 31713682 DOI: 10.1007/s00414-019-02181-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Body fluid identification in crime scene investigations aids in reconstruction of crime scenes. Several studies have identified and reported differentially methylated sites (DMSs) and regions (DMRs) which differ between forensically relevant tissues (tDMRs) and body fluids. Diverse factors affect methylation patterns such as the environment, diets, lifestyle, disease, ethnicity, genetic variation, amongst others. Thus, it is important to analyse the stability of markers employed for forensic identification. Furthermore, even though epigenetic modifications are described as stable and heritable, epigenetic inheritance of potential markers for body fluid identification needs to be assessed in the long term. Here, we discuss the current status of reported DNA methylation-based markers and their verification studies. Such thorough investigation is crucial to develop a stable panel of DNA methylation-based markers for accurate body fluid identification.
Collapse
Affiliation(s)
- Farzeen Kader
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| |
Collapse
|
14
|
Zhan YX, Luo GH. DNA methylation detection methods used in colorectal cancer. World J Clin Cases 2019; 7:2916-2929. [PMID: 31624740 PMCID: PMC6795732 DOI: 10.12998/wjcc.v7.i19.2916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) remains a major contributor to the number of cancer-related deaths that occur annually worldwide. With the development of molecular biology methods, an increasing number of molecular biomarkers have been identified and investigated. CRC is believed to result from an accumulation of epigenetic changes, and detecting aberrant DNA methylation patterns is useful for both the early diagnosis and prognosis of CRC. Numerous studies are focusing on the development of DNA methylation detection methods or DNA methylation panels. Thus, this review will discuss the commonly used techniques and technologies to evaluate DNA methylation, their merits and deficiencies as well as the prospects for new methods.
Collapse
Affiliation(s)
- Yu-Xia Zhan
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
15
|
Prajzendanc K, Domagała P, Hybiak J, Ryś J, Huzarski T, Szwiec M, Tomiczek-Szwiec J, Redelbach W, Sejda A, Gronwald J, Kluz T, Wiśniowski R, Cybulski C, Łukomska A, Białkowska K, Sukiennicki G, Kulczycka K, Narod SA, Wojdacz TK, Lubiński J, Jakubowska A. BRCA1 promoter methylation in peripheral blood is associated with the risk of triple-negative breast cancer. Int J Cancer 2019; 146:1293-1298. [PMID: 31469414 DOI: 10.1002/ijc.32655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
Methylation of the promoter of the BRCA1 gene in DNA derived from peripheral blood cells is a possible risk factor for breast cancer. It is not clear if this association is restricted to certain types of breast cancer or is a general phenomenon. We evaluated BRCA1 methylation status in peripheral blood cells from 942 breast cancer patients and from 500 controls. We also assessed methylation status in 262 paraffin-embedded breast cancer tissues. Methylation status was assessed using methylation-sensitive high-resolution melting and was categorized as positive or negative. BRCA1 methylation in peripheral blood cells was strongly associated with the risk of triple-negative breast cancer (TNBC) (odds ratio [OR] 4.70; 95% confidence interval [CI]: 3.13-7.07; p < 0.001), but not of estrogen-receptor positive breast cancer (OR 0.80; 95% CI: 0.46-1.42; p = 0.46). Methylation was also overrepresented among patients with high-grade cancers (OR 4.53; 95% CI: 2.91-7.05; p < 0.001) and medullary cancers (OR 3.08; 95% CI: 1.38-6.88; p = 0.006). Moreover, we detected a significant concordance of BRCA1 promoter methylation in peripheral blood and paired tumor tissue (p < 0.001). We found that BRCA1 promoter methylation in peripheral blood cells is associated with approximately five times greater risk of TNBC. We propose that BRCA1 methylation in blood-derived DNA could be a novel biomarker of increased breast cancer susceptibility, in particular for triple-negative tumors.
Collapse
Affiliation(s)
- Karolina Prajzendanc
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Domagała
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jolanta Hybiak
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie Memorial Centre and Institute of Oncology, Cracow, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zielona Góra, Poland.,Department of Clinical Oncology, University Hospital in Zielona Góra, Zielona Góra, Poland
| | - Joanna Tomiczek-Szwiec
- Department of Histology, Institute of Medicine, University of Opole, Opole, Poland.,Regional Oncology Centre, Opole, Poland
| | - Wojciech Redelbach
- Department of Anatomy, Institute of Medicine, University of Opole, Opole, Poland
| | - Aleksandra Sejda
- Department of Pathology, Provincial Specialist Hospital, Olsztyn, Poland.,Patomorphology Department, University of Warmia and Mazury, Olsztyn, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Kluz
- Institute of Obstetric and Emergency Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Rafał Wiśniowski
- Department of Clinical Oncology, Regional Oncology Centre, Bielsko-Biala, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Alicja Łukomska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Sukiennicki
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Kulczycka
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Tomasz K Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Ren J, Cui JP, Luo M, Liu H, Hao P, Wang X, Zhang GH. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019; 14:e0220500. [PMID: 31381583 PMCID: PMC6681966 DOI: 10.1371/journal.pone.0220500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant DNA methylation patterns are common in cancers and environmental pollutant exposed subjects. Up to date, few studies have examined the aberrant DNA methylation patterns in benzene exposed workers. We recruited 141 benzene-exposed workers, including 83 benzene-exposed workers from a shoe factory in Wenzhou and 58 workers from a painting workshop in Wuhu, 35 workers in Wuhu were followed from 2009 to 2013, and 48 indoor workers as controls from Wenzhou. We used high-resolution melting (HRM) to quantitate human samples of DNA methylation in long interspersed nuclear element-1 (LINE-1), (6)-methylguanine-DNA methyltransferase (MGMT), and DNA mismatch repair gene human mutator L homologue 1 (hMLH1). AML-5 cells were treated with benzoquinone (BQ) and hydroquinone (HQ), and the promoter methylation of MGMT and hMLH1 was detected using the bisulfite sequencing PCR method. The degree of LINE-1 methylation in benzene-exposed workers was significantly lower than that of the controls (p<0.001), and the degree of MGMT (p<0.001) and hMLH1 (p = 0.01) methylation was significantly higher than that of the controls. The in vitro study validated the aberrant hypermethylation of hMLH1 after treatment with BQ. Among the cohort workers who were followed from 2009 to 2013, the LINE1 methylation elevated in 2013 than 2009 (p = 0.004), and premotor methylation in hMLH1 reduced in 2013 than 2009 (p = 0.045) with the reduction of the benzene exposure. This study provides evidence that benzene exposure can induce LINE-1 hypomethylation and DNA repair gene hypermethylation.
Collapse
Affiliation(s)
- Jingchao Ren
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jun-peng Cui
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Mengkai Luo
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Hao
- Xinxiang Center for Disease Control and Prevention, Xinxiang, China
| | - Xiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| | - Guang-hui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| |
Collapse
|
17
|
Wasenang W, Chaiyarit P, Proungvitaya S, Limpaiboon T. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases. Clin Epigenetics 2019; 11:39. [PMID: 30832707 PMCID: PMC6399934 DOI: 10.1186/s13148-019-0634-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct epithelial cell lining. The misdiagnosis of CCA and other biliary diseases may occur due to the similarity of clinical manifestations and blood tests resulting in inappropriate or delayed treatment. Thus, an accurate and less-invasive method for differentiating CCA from other biliary diseases is inevitable. METHODS We quantified methylation of OPCML, HOXA9, and HOXD9 in serum cell-free DNA (cfDNA) of CCA patients and other biliary diseases using methylation-sensitive high-resolution melting (MS-HRM). Their potency as differential biomarkers between CCA and other biliary diseases was also evaluated by using receiver operating characteristic (ROC) curves. RESULTS The significant difference of methylation levels of OPCML and HOXD9 was observed in serum cfDNA of CCA compared to other biliary diseases. Assessment of serum cfDNA methylation of OPCML and HOXD9 as differential biomarkers of CCA and other biliary diseases showed the area under curve (AUC) of 0.850 (0.759-0.941) for OPCML which sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 80.00%, 90.00%, 88.88%, 81.81%, and 85.00%, respectively. The AUC of HOXD9 was 0.789 (0.686-0.892) with sensitivity, specificity, PPV, NPV, and accuracy of 67.50%, 90.00%, 87.09%, 73.46%, and 78.75%, respectively. The combined marker between OPCML and HOXD9 showed sensitivity, specificity, PPV, and NPV of 62.50%, 100%, 100%, and 72.72%, respectively, which may be helpful to prevent a misdiagnosis between CCA and other biliary diseases. CONCLUSIONS Our findings suggest the application of serum cfDNA methylation of OPCML and HOXD9 for differential diagnosis of CCA and other biliary diseases due to its less invasiveness and clinically practical method which may benefit the patients by preventing the misdiagnosis of CCA and avoiding unnecessary surgical intervention.
Collapse
Affiliation(s)
- Wiphawan Wasenang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
18
|
Aberrant DNA methylation of M1-macrophage genes in coronary artery disease. Sci Rep 2019; 9:1429. [PMID: 30723273 PMCID: PMC6363807 DOI: 10.1038/s41598-018-38040-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 01/22/2023] Open
Abstract
M1 and M2 macrophage balance in atherosclerosis has attracted much interest. Though, it remains unknown how macrophage heterogeneity is regulated. Moreover, the regulation of macrophage polarization and activation also involve DNA methylation. However, it remains ambiguous which genes are under direct regulation by DNA methylation. Our aim was to evaluate the gene-specific promoter DNA methylation status of M1/M2 polarization markers in PBMCs of CAD patients. A case-control study was performed with 25 CAD patients and 25 controls to study the promoter DNA methylation status of STAT1, STAT6, MHC2, IL12b, iNOS, JAK1, JAK2 and SOCS5 using MS-HRM analysis. Our data indicates that there was a clear-cut difference in the pattern of gene-specific promoter DNA methylation of CAD patients in comparison to controls. A significant difference was observed between the percentage methylation of STAT1, IL12b, MHC2, iNOS, JAK1 and JAK2 in CAD patients and control subjects. In conclusion, our data show that MS-HRM assay is a rapid and inexpensive method for qualitatively identifying aberrant gene-specific promoter DNA methylation changes in CAD. Furthermore, we propose that gene-specific promoter DNA methylation based on monocyte/macrophage might aid as diagnostic marker for clinical application or DNA methylation-related drug interventions may offer novel possibilities for atherosclerotic disease management.
Collapse
|
19
|
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48:5717-5751. [DOI: 10.1039/c9cs00174c] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis, bio-functionalization, and multifunctional activities of superparamagnetic-nanostructures have been extensively reviewed with a particular emphasis on their uses in a range of disease-specific biomarker detection and associated challenges.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Department of Biochemistry & Molecular Biology
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| | - Muhammad Younus
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science & Technology
- Sylhet 3114
- Bangladesh
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Mechanical and Mining Engineering
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
- Institute of Molecular Plus
| | - Muhammad J. A. Shiddiky
- School of Environment and Sciences and Queensland Micro- and Nanotechnology Centre (QMMC)
- Griffith University
- QLD 4111
- Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
20
|
Dynamic alterations in methylation of global DNA and growth-related genes in large yellow croaker (Larimichthys crocea) in response to starvation stress. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:98-105. [DOI: 10.1016/j.cbpb.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
|
21
|
Gao HL, Wang X, Sun HR, Zhou JD, Lin SQ, Xing YH, Zhu L, Zhou HB, Zhao YS, Chi Q, Liu YP. Methylation Status of Transcriptional Modulatory Genes Associated with Colorectal Cancer in Northeast China. Gut Liver 2018; 12:173-182. [PMID: 29291617 PMCID: PMC5832342 DOI: 10.5009/gnl17163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Methylation status plays a causal role in carcinogenesis in targeted tissues. However, the relationship between the DNA methylation status of multiple genes in blood leukocytes and colorectal cancer (CRC) susceptibility as well as interactions between dietary factors and CRC risks are unclear. Methods We performed a case-control study with 466 CRC patients and 507 cancer-free controls to investigate the association among the methylation status of individual genes, multiple CpG site methylation (MCSM), multiple CpG site heterogeneous methylation and CRC susceptibility. Peripheral blood DNA methylation levels were detected by performing methylation-sensitive high-resolution melting. Results Total heterogeneous methylation of CA10 and WT1 conferred a significantly higher risk of CRC (adjusted odds ratio [ORadjusted], 5.445; 95% confidence interval [CI], 3.075 to 9.643; ORadjusted, 1.831; 95% CI, 1.100 to 3.047; respectively). Subjects with high-level MCSM (MCSM-H) status demonstrated a higher risk of CRC (ORadjusted, 4.318; 95% CI, 1.529 to 12.197). Additionally, interactions between the high-level intake of fruit and CRH, WT1, and MCSM on CRC were statistically significant. Conclusions The gene methylation status of blood leukocytes may be associated with CRC risk. MCSM-H of blood leukocytes was associated with CRC, especially in younger people. Some dietary factors may affect hypermethylation status and influence susceptibility to CRC.
Collapse
Affiliation(s)
- Han-Lu Gao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xuan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Hong-Ru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Jun-De Zhou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shang-Qun Lin
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Yu-Hang Xing
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Lin Zhu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Hai-Bo Zhou
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Ya-Shuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Qiang Chi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Peng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Sun LL, Liu Y, Sun X, Pan L, Wu D, Wang YD. Limited Role of Promoter Methylation of MGMT and C13ORF18 in Triage of Low-Grade Squamous Intraepithelial Lesion. Chin Med J (Engl) 2018; 131:939-944. [PMID: 29664054 PMCID: PMC5912060 DOI: 10.4103/0366-6999.229896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Promoter methylation of MGMT and C13ORF18 has been confirmed as a potential biomarker for early diagnosis of cervical cancer. The aim of this study was to evaluate the performance of MGMT and C13ORF18 promoter methylation for triage of cytology screening samples and explore the potential mechanism. Methods Methylation-sensitive high-resolution melting was used to detect promoter methylation of MGMT and C13ORF18 in 124 cervical samples. High-risk human papillomavirus (HR-HPV) was detected by the Digene Hybrid Capture 2®. Gene methylation frequencies in relation to cervical intraepithelial neoplasia (CIN) were analyzed. Frequencies were compared by Chi-square tests. The expression of gene biomarkers and methylation regulators was analyzed by immunohistochemical staining, real-time fluorescence quantitative polymerase chain reaction, and Western blot. Results For triage of low-grade squamous intraepithelial lesion (LSIL), gene methylation increased specificity from 4.0% of HR-HPV detection to 30.8% of MGMT (χ2 = 9.873, P = 0.002) and to 50.0% of C13ORF18 (χ2 = 21.814, P = 0.001). For triage of atypical squamous cells of undetermined significance, HR-HPV detection had higher positive predictive value of 54.8%. Either MGMT or C13ORF18 methylation combined with HR-HPV increased the negative predictive value to 100.0% (χ2 = 9.757, P = 0.002). There was no relationship between MGMT and C13ORF18 expression and DNA methylation (χ2 = 0.776, P = 0.379 and χ2 = 1.411, P = 0.235, respectively). MBD2 protein level in cervical cancer was relatively lower than normal cervical tissue (t = 4.11, P = 0.006). Conclusions HR-HPV detection is the cornerstone for triage setting of CIN. Promoter methylation of MGMT and C13ORF18 plays a limited role in triage of LSIL. Promoter methylation of both genes may not be the causes of gene silence.
Collapse
Affiliation(s)
- Lu-Lu Sun
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Yuan Liu
- Department of Pathology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Lei Pan
- Department of Pathology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Dan Wu
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Yu-Dong Wang
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| |
Collapse
|
23
|
Daugaard I, Hussmann D, Kristensen L, Kristensen T, Kjeldsen TE, Nyvold CG, Larsen TS, Møller MB, Hansen LL, Wojdacz TK. Chronic lymphocytic leukemia patients with heterogeneously or fully methylated LPL promotor display longer time to treatment. Epigenomics 2018; 10:1155-1166. [PMID: 30182737 DOI: 10.2217/epi-2018-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM We investigated whether DNA methylation regulates expression of LPL and PI3K complex genes in chronic lymphocytic leukemia (CLL) and evaluated the prognostic significance of LPL promoter methylation in CLL patients. Patients & methods: Methylation of LPL promoter was assessed in 112 patients using methylation-sensitive high-resolution melting (MS-HRM). RESULTS Patients with a fully or heterogeneously methylated LPL promoter had significantly longer median time to treatment (p < 0.001) and 75% lower (hazard ratio: 0.25; 95% CI: 0.15-0.42; p < 0.001) risk of requirement for treatment as opposed to patients with nonmethylated promoter. Multivariate modeling confirmed independent prognostic value of these findings. CONCLUSION Chronic lymphocytic leukemia patients with a fully or heterogeneously methylated LPL gene promoter display indolent disease course and acquisition of heterogeneous methylation of LPL promoter is insufficient to induce gene expression.
Collapse
Affiliation(s)
- Iben Daugaard
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Dianna Hussmann
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Louise Kristensen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, 5000 Odense C, Denmark
| | - Thomas Kristensen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, 5000 Odense C, Denmark
| | - Tina E Kjeldsen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Charlotte G Nyvold
- Department of Haematology, Odense University Hospital, Sdr. Bouldvard 29, 5000 Odense C, Denmark
| | - Thomas S Larsen
- Department of Haematology, Odense University Hospital, Sdr. Bouldvard 29, 5000 Odense C, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, 5000 Odense C, Denmark
| | - Lise Lotte Hansen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Tomasz K Wojdacz
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Sun H, Zhou H, Zhang Y, Chen J, Han X, Huang D, Ren X, Jia Y, Fan Q, Tian W, Zhao Y. Aberrant methylation of FAT4 and SOX11 in peripheral blood leukocytes and their association with gastric cancer risk. J Cancer 2018; 9:2275-2283. [PMID: 30026822 PMCID: PMC6036714 DOI: 10.7150/jca.24797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/31/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Aberrant DNA methylation, especially tumor suppressor gene hypermethylation, is a well-recognized biomarker of initial tumorogenesis stages. FAT4 and SOX11 are putative tumor suppressor genes and can be down-regulated by hypermethylation in various cancers tissues. However, in peripheral blood leukocytes, the association between these two genes methylation status, as well as the effects of gene-environment interactions, and gastric cancer (GC) risk remain unclear. Methods: A hospital-based case-control study including 375 cases and 394 controls was conducted. Peripheral blood leukocytes DNA methylation status were detected by methylation-sensitive high-resolution melting (MS-HRM) assay. Logistic regression was adopted to analyze the relationship of FAT4 and SOX11 methylation with GC susceptibility. Results: Positive methylation (Pm) and total positive methylation (Tpm) of FAT4 were significantly increased the risk of GC (OR = 2.204, 95% CI: 1.168-4.159, P = 0.015; OR = 1.583, 95% CI: 1.031-2.430, P = 0.036, respectively). Compared with controls, cases exhibited higher SOX11 Pm frequencies with OR of 2.530 (95% CI: 1.289-4.969, P = 0.007). Nonetheless, no statistically significant association between SOX11 Tpm and GC risk was observed. Additionally, interactions between FAT4 Tpm and increased consumption of freshwater fish (≥1 times/week) displayed an antagonistic effect on GC (OR = 0.328, 95% CI: 0.142-0.762, P = 0.009), and high salt intake interacted with SOX11 Tpm also showed statistically significant (OR = 0.490, 95% CI: 0.242-0.995, P = 0.048). Conclusions:FAT4 aberrant methylation in peripheral blood leukocytes and gene-environment interactions were associated with the risk of GC, while SOX11 was controversial and needed to be more investigated.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yan Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Jie Chen
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Di Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yunhe Jia
- Department of Colorectal Cancer Surgery, The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qing Fan
- Xiangfang Center for Disease Control and Prevention, Harbin 150081, Heilongjiang Province, P. R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
25
|
Liu F, Zhang H, Lu S, Wu Z, Zhou L, Cheng Z, Bai Y, Zhao J, Zhang Q, Mao H. Quantitative assessment of gene promoter methylation in non-small cell lung cancer using methylation-sensitive high-resolution melting. Oncol Lett 2018; 15:7639-7648. [PMID: 29725463 PMCID: PMC5920472 DOI: 10.3892/ol.2018.8321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is closely associated with aberrant epigenetic changes. Previous studies have identified various genes associated with non-small cell lung cancer (NSCLC), but the precise combination responsible for its etiology is still debated. The aim of the present study was to select a new set of NSCLC-related genes using methylation-sensitive high-resolution melting. The promoter methylation status of six selected genes, consisting of protocadherin γ subfamily B, 6 (PCDHGB6), homeobox A9 (HOXA9), O6-methylguanine-DNA methyltransferase (MGMT), microRNA (miR)-126, suppressor of cytokine signaling 3 (SOCS3) and Ras association domain family member 5, also termed NORE1A, was evaluated in 54 NSCLC patients. From these samples, genome-wide DNA was extracted and bisulfite conversion was performed along with fluorogenic quantitative polymerase chain reaction to detect methylation values of the six selected promoters. The present results revealed frequent methylation on PCDHGB6, HOXA9 and miR-126, which contrasted with infrequent methylation on MGMT. The results indicated no methylation on either SOCS3 or NORE1A. The sensitivity and specificity of the methylation assessment were 85.2 and 81.5%, respectively, and the analysis results were validated by pyrosequencing. Furthermore, minute comparison of the association between DNA methylation and clinical features was performed. Overall, these results may provide potential information for the development of better clinical diagnostics and more targeted and effective therapies for NSCLC.
Collapse
Affiliation(s)
- Fangming Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China.,Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, P.R. China
| | - Honglian Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China
| | - Zule Cheng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China
| | - Yanan Bai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China
| | - Jianlong Zhao
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, P.R. China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, P.R. China.,Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, The Key Laboratory of Biomaterials of Tianjin, Tianjin 300192, P.R. China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, P.R. China
| |
Collapse
|
26
|
DNA Methylation Variability in a Single Locus of the RXRα Promoter from Umbilical Vein Blood at Term Pregnancy. Biochem Genet 2018; 56:210-224. [PMID: 29305749 DOI: 10.1007/s10528-017-9838-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/29/2017] [Indexed: 12/26/2022]
Abstract
DNA methylation status of RXRα gene promoter has been correlated with maternal diet during early pregnancy, and associated with offspring's adiposity and bone mineral content. In adult life, increased methylation of RXRα promoter region is associated with myocardium pathologies. Early growth response proteins (EGR) are zinc finger transcription factors associated with several cellular pathways such as inflammation, apoptosis, and cardiopathies. DNA-binding sequences of EGR proteins have been reported in the RXRα gene promoter using chromatin immunoprecipitation methods. Here, we used correlations between the maternal pre-pregnancy body mass index (p-BMI), gestational weight gain (GWG), and birth weight (BW) as indirect indicators of the maternal nutritional status as modifier of DNA methylation in the offspring. DNA methylation status from newborns' umbilical vein blood in full-term pregnancy was evaluated in a short sequence (116 pb) of the RXRα gene promoter that contains the elements of response sequence for EGR proteins. Fifty-three bisulfite-modified DNA samples were assessed through methyl-sensitive high-resolution melting (MS-HRM) analysis. To validate the results, we directly sequenced MS-HRM samples to confirm the presence of CpG-methylated positions. In addition, the RXRα protein levels in extracts of umbilical vein blood were evaluated by western blot. We found differential methylation in a specific locus of the RXRα promoter surrounding the EGR-binding sequence; however, no correlation was found with the level of RXRα protein expression. Variability in the methylation status of the RXRα promoter near the EGR transcription factor binding site in newborn cord blood provides controversial epigenetic insights into RXRα regulation via EGR proteins.
Collapse
|
27
|
Abstract
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
Collapse
Affiliation(s)
- Dianna Hussmann
- Institute of Biomedicine, Aarhus University, Bartholins Allé 6, Aarhus C, 8000, Denmark
| | - Lise Lotte Hansen
- Institute of Biomedicine, Aarhus University, Bartholins Allé 6, Aarhus C, 8000, Denmark.
| |
Collapse
|
28
|
Jezkova E, Zubor P, Kajo K, Grendar M, Dokus K, Adamkov M, Lasabova Z, Plank L, Danko J. Impact of RASSF1A gene methylation on the metastatic axillary nodal status in breast cancer patients. Oncol Lett 2017; 14:758-766. [PMID: 28693231 PMCID: PMC5494671 DOI: 10.3892/ol.2017.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Hypermethylation of CpG islands is a hallmark of cancer and occurs at an early stage in breast tumorigenesis. To gain insight into the epigenetic switches that may promote and/or contribute to the initial neoplastic events during breast carcinogenesis, the present study focused on the DNA methylation profile of invasive breast carcinoma. The aim of the study was to evaluate the prognostic significance of Ras association domain family 1 isoform A (RASSF1A) promoter methylation status in operable breast cancer, and to analyze the utility of this biomarker regarding its association with metastatic and nonmetastatic axillary nodal status. For this purpose, formalin-fixed, paraffin-embedded tissue specimens from 116 breast cancer patients with known axillary nodal status were subjected to assessment of RASSF1A promoter methylation status by methylation-specific polymerase chain reaction (MSP) and methylation-sensitive high-resolution melting assay, and the results were subsequently validated by bisulfite sequencing. A multinomial logistic regression model was used to model the dependence of distinct levels of methylation status of the RASSF1A promoter on the nodal status. Promoter region CpG hypermethylation was identified by MSP in 97 (83.6%) of 116 primary breast tumors, while hypermethylation of RASSF1A was confirmed by MS-HRM in 107 (92.2%) of 116 cases of breast cancer. Based on the results of the multinomial logistic regression model, there was no significant difference between the frequency of RASSF1A promoter methylation and axillary lymph node status of patients in general. However, upon adjustment of pN stage, an association was identified between pN0 lymph node-negative status (without axillary metastases) and percentage of RASSF1A methylation in two groups of heterogeneous methylated alleles with ≤50% methylated (P<0.05) and >50% methylated alleles (P<0.0001). If a patients' nodal status changes from pN- to pN+ then the risk of having >50% methylated alleles increases by 7%. The present study revealed a specific phenomenon, suggesting that the presence of heterogeneous methylated alleles in the RASSF1A gene is significantly associated with lymph node-negative status in breast cancer patients. Furthermore, greater significance with negative axillary nodal status was observed with a higher level of heterogeneous methylated alleles in the RASSF1A gene.
Collapse
Affiliation(s)
- Eva Jezkova
- Department of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia.,Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Zubor
- Department of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia.,Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Martin University Hospital, 036 01 Martin, Slovakia
| | - Karol Kajo
- St. Elizabeth Cancer Institute Hospital, 812 50 Bratislava, Slovakia
| | - Marian Grendar
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Karol Dokus
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Martin University Hospital, 036 01 Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zora Lasabova
- Department of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Lukas Plank
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Martin University Hospital, 036 01 Martin, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Martin University Hospital, 036 01 Martin, Slovakia
| |
Collapse
|
29
|
Daugaard I, Knudsen A, Kjeldsen TE, Hager H, Hansen LL. The association between miR-34 dysregulation and distant metastases formation in lung adenocarcinoma. Exp Mol Pathol 2017; 102:484-491. [PMID: 28512015 DOI: 10.1016/j.yexmp.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022]
Abstract
Lung cancer has the highest mortality rate amongst human cancers and the majority of deaths can be attributed to metastatic spread. The miR-34 family includes three tumor suppressive miRs: miR-34a, miR-34b and miR-34c. miR-34 downregulation is a frequent observation in human malignancies and is often attributed to hypermethylation of the miR-34a and miR-34b/c promoters. Here, the potential association between aberrant miR-34 expression and promoter methylation and distant metastases formation in lung adenocarcinoma (LAC) is investigated. The expression levels of miR-34a, miR-34b and miR-34c, as well as the methylation status of the miR-34a and miR-34b/c promoters were determined in a LAC patient cohort comprising 26 non-metastasizing and 26 metastasizing primary LACs, as well as 24 paired distant metastases and 25 tumor-adjacent normal lung samples using RT-qPCR and Methylation-Sensitive High Resolution Melting (MS-HRM) analysis. No difference in expression was observed for miR-34a when comparing metastasizing and non-metastasizing LACs (p=0.793). For both miR-34b and miR-34c, a significantly lower expression level was determined in metastasizing LACs compared to non-metastasizing LACs (p=0.0005 and p=0.002) with similarly decreased expression levels observed in the paired distant metastases. Hypermethylation was detected in 35/51 LACs compared to 0/25 tumor-adjacent normal lungs for the miR-34a promoter (p<0.0001). Similarly, 18/51 LACs compared to 1/25 tumor-adjacent normal lungs showed hypermethylation of the miR-34b/c promoter (p=0.003). No difference in methylation was observed between metastasizing and non-metastasizing LACs for neither the miR-34a (p=0.832) nor the miR-34b/c (p=0.900) promoter. In conclusion, miR-34a and miR-34b/c promoter hypermethylation is a frequent event in LAC occurring in 68.7% and 35.3% of tested cases (n=51), respectively. Low miR-34b and miR-34c expression was associated with distant metastases formation in LAC. These changes can be targeted as novel biomarkers in LAC.
Collapse
Affiliation(s)
- Iben Daugaard
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark.
| | - Alice Knudsen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Tina E Kjeldsen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, Nørrebrogade 45, DK-8000 Aarhus C, Denmark; Department of Clinical Pathology, Vejle Hospital, Kabbeltoft 25, DK-7100 Vejle, Denmark
| | - Lise Lotte Hansen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Park BM, Yoon OJ, Lee DH. Global DNA Methylation Patterns and Gene Expression Associated with Obesity-Susceptibility in Offspring of Pregnant Sprague-Dawley Rats Exposed to BDE-47 and BDE-209. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.1.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Byeong-Min Park
- Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Ok-Jin Yoon
- Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Do-Hoon Lee
- Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
31
|
López-Álvarez GS, Wojdacz TK, García-Cuellar CM, Monroy-Ramírez HC, Rodríguez-Segura MA, Pacheco-Rivera RA, Valencia-Antúnez CA, Cervantes-Anaya N, Soto-Reyes E, Vásquez-Garzón VR, Sánchez-Pérez Y, Villa-Treviño S. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats. Biol Open 2017; 6:59-70. [PMID: 27895046 PMCID: PMC5278421 DOI: 10.1242/bio.020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. Summary: Many genes downregulated by DNA methylation are tumor suppressor genes. In the present study, DNA methylation of Nox4 is observed, with implications for Nox4 as a potential therapeutic target for liver or other cancers.
Collapse
Affiliation(s)
- Guadalupe S López-Álvarez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Tomasz K Wojdacz
- Aarhus Institute of Advanced Studies and Department of Biomedicine, Bartholins Allé 6 Building, 1242, 8000 Aarhus C, Denmark
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, CDMX CP 14080, México
| | - Hugo C Monroy-Ramírez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Miguel A Rodríguez-Segura
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Ruth A Pacheco-Rivera
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas-IPN, Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, CDMX CP 11340, México
| | - Carlos A Valencia-Antúnez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Nancy Cervantes-Anaya
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Ernesto Soto-Reyes
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, CDMX CP 14080, México
| | - Verónica R Vásquez-Garzón
- CONACYT, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex-Hacienda de Aguilera S/N Carretera a San Felipe del Agua, Oaxaca, Oax., CP 68020, México
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, CDMX CP 14080, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| |
Collapse
|
32
|
Cheishvili D, Petropoulos S, Christiansen S, Szyf M. Targeted DNA Methylation Analysis Methods. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2017. [DOI: 10.1007/978-1-4939-6743-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Khor GH, Froemming GRA, Zain RB, Abraham TM, Lin TK. Involvement of CELSR3 Hypermethylation in Primary Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2016; 17:219-23. [PMID: 26838213 DOI: 10.7314/apjcp.2016.17.1.219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoter hypermethylation is a frequent epigenetic mechanism for gene transcription repression in cancer and is one of the hallmarks of the disease. Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) contributes to cell contact-mediated communication. Dysregulation of promoter methylation has been reported in various cancers. OBJECTIVES The objectives of this study were to investigate the CELSR3 hypermethylation level in oral squamous cell carcinomas (OSCCs) using methylation-sensitive high-resolution melting analysis (MS-HRM) and to correlate CELSR3 methylation with patient demographic and clinicopathological parameters. MATERIALS AND METHODS Frozen tissue samples of healthy subjects' normal mucosa and OSCCs were examined with regard to their methylation levels of the CELSR3 gene using MS-HRM. RESULTS MS-HRM analysis revealed a high methylation level of CELSR3 in 86% of OSCC cases. Significant correlations were found between CELSR3 quantitative methylation levels with patient ethnicity (P=0.005), age (P=0.024) and pathological stages (P=0.004). A moderate positive correlation between CELSR3 and patient age was also evident (R=0.444, P=0.001). CONCLUSIONS CELSR3 promoter hypermethylation may be an important mechanism involved in oral carcinogenesis. It may thus be used as a biomarker in OSCC prognostication.
Collapse
Affiliation(s)
- Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buluh Campus, Malaysia E-mail :
| | | | | | | | | |
Collapse
|
34
|
Li H, Åkerman G, Lidén C, Alhamdow A, Wojdacz TK, Broberg K, Albin M. Alterations of telomere length and DNA methylation in hairdressers: A cross-sectional study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:159-167. [PMID: 26637967 DOI: 10.1002/em.21991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Working as hairdressers has been associated with increased risk for cancer, particularly bladder cancer. To evaluate if current hairdressers have elevated risks of adverse health effects, we measured several biomarkers related to cancer-related DNA alterations. We enrolled 295 hairdressers and 92 non-hairdressers (all female non-smokers) from Stockholm and southern Sweden. Questionnaire data were collected for each participant, including work tasks for the hairdressers. We measured telomere length in peripheral blood leucocytes using quantitative PCR and DNA methylation status of genes relevant for bladder cancer using methylation sensitive high resolution melting analysis. The hairdressers had shorter telomeres (β = -0.069, P = 0.019) compared with non-hairdressers. Shorter telomeres were found in hairdressers up to 32 years old performing hair waving more than once per week as compared with hairdressers in the same age group performing hair waving less often (β = -0.12, P = 0.037). Hair waving was associated with less frequent CDKN2A methylation (odds ratio, OR = 0.19, P = 0.033). Shorter telomeres in hairdressers may indicate a genotoxic effect. Performing hair waving was associated with short telomere length, although the effect was only observed in young hairdressers. No clear patterns were discerned with regard to DNA methylation of bladder cancer-related genes. The observed changes of methylation were not all in the expected direction and warrant further investigation.
Collapse
Affiliation(s)
- Huiqi Li
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Gabriella Åkerman
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Carola Lidén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ayman Alhamdow
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomasz K Wojdacz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Albin
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Chen X, Bai G, Scholl TO. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes. ACTA ACUST UNITED AC 2016; 3. [PMID: 27500275 PMCID: PMC4975560 DOI: 10.4172/2376-127x.1000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in particular.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Theresa O Scholl
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
36
|
Teroganova N, Girshkin L, Suter CM, Green MJ. DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: a systematic review. BMC Genet 2016; 17:27. [PMID: 26809779 PMCID: PMC4727379 DOI: 10.1186/s12863-016-0332-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increasing evidence suggests the involvement of epigenetic processes in the development of schizophrenia and bipolar disorder, and recent reviews have focused on findings in post-mortem brain tissue. A systematic review was conducted to synthesise and evaluate the quality of available evidence for epigenetic modifications (specifically DNA methylation) in peripheral blood and saliva samples of schizophrenia and bipolar disorder patients in comparison to healthy controls. METHODS Original research articles using humans were identified using electronic databases. There were 33 included studies for which data were extracted and graded in duplicate on 22 items of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement, to assess methodological precision and quality of reporting. RESULTS There were 15 genome-wide and 18 exclusive candidate gene loci investigations for DNA methylation studies. A number of common genes were identified as differentially methylated in schizophrenia/bipolar disorder, which were related to reelin, brain-derived neurotrophic factor, dopamine (including the catechol-O-methyltransferase gene), serotonin and glutamate, despite inconsistent findings of hyper-, hypo-, or lack of methylation at these and other loci. The mean STROBE score of 59% suggested moderate quality of available evidence; however, wide methodological variability contributed to a lack of consistency in the way methylation levels were quantified, such that meta-analysis of the results was not possible. CONCLUSIONS Moderate quality of available evidence shows some convergence of differential methylation at some common genetic loci in schizophrenia and bipolar disorder, despite wide variation in methodology and reporting across studies. Improvement in the clarity of reporting clinical and other potential confounds would be useful in future studies of epigenetic processes in the context of exposure to environmental and other risk factors.
Collapse
Affiliation(s)
- Nina Teroganova
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
- Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Leah Girshkin
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
- Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Catherine M Suter
- Molecular Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
- Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
| |
Collapse
|
37
|
Safa AH, Harandi MF, Tajaddini M, Rostami-Nejad M, Mohtashami-Pour M, Pestehchian N. Rapid Identification of Echinococcus granulosus and E. canadensis Using High-Resolution Melting (HRM) Analysis by Focusing on a Single Nucleotide Polymorphism. Jpn J Infect Dis 2016; 69:300-5. [DOI: 10.7883/yoken.jjid.2015.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ahmad Hosseini Safa
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences
| | | | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Disease Research Center, Shahid Beheshti University of Medical Sciences
| | - Mehdi Mohtashami-Pour
- Department of Medical Parasitology and Mycology, Tabriz University of Medical Sciences
| | - Nader Pestehchian
- Department of Medical Parasitology and Mycology, Isfahan University of Medical Sciences
| |
Collapse
|
38
|
Wojdacz TK. Biological and methodological aspects of assessment of locus specific de novo methylation in blood. Biomark Med 2015; 9:1291-9. [PMID: 26612587 DOI: 10.2217/bmm.15.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Locus-specific methylation in blood differs between individuals. As those changes may represent de novo methylation, induced by environmental factors, we aimed to evaluate the biological and methodological limitations of detection of methylation in blood. MATERIALS & METHODS We used Methylation-Sensitive High Resolution Melting to analyze methylation at 21 gene loci in peripheral blood DNA samples from 203 healthy women. RESULTS Overall nine of the screened loci displayed marked inter-individual variation in methylation frequency with methylation levels predominantly around 1%. The methylation of specific loci showed different association with age and reproducibility of detection. CONCLUSIONS Our results allowed benchmarking of both technological and biological limitations that need to be accounted for when evaluating locus specific methylation in blood as potential biomarker.
Collapse
Affiliation(s)
- Tomasz Kazimierz Wojdacz
- Institute of Environmental Medicine (Unit for Metals & Health), Karolinska Institutet, Nobels vag 13, Box210, 17177 Stockholm, Sweden
| |
Collapse
|
39
|
Daugaard I, Kjeldsen TE, Hager H, Hansen LL, Wojdacz TK. The influence of DNA degradation in formalin-fixed, paraffin-embedded (FFPE) tissue on locus-specific methylation assessment by MS-HRM. Exp Mol Pathol 2015; 99:632-40. [PMID: 26551081 DOI: 10.1016/j.yexmp.2015.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022]
Abstract
Readily accessible formalin-fixed paraffin embedded (FFPE) tissues are a highly valuable source of genetic material for molecular analyses in both research and in vitro diagnostics but frequently genetic material in those samples is highly degraded. With locus-specific methylation changes being widely investigated for use as biomarkers in various aspects of clinical disease management, we aimed to evaluate to what extent standard laboratory procedures can approximate the quality of the DNA extracted from FFPE samples prior to methylation analyses. DNA quality in 107 FFPE non-small cell lung cancer (NSCLC) samples was evaluated using spectrophotometry and gel electrophoresis. Subsequently, the quality assessment results were correlated with the results of locus specific methylation assessment with methylation sensitive high resolution melting (MS-HRM). The correlation of template quality with PCR amplification performance and HRM based methylation detection indicated a significant influence of DNA quality on PCR amplification but not on methylation assessment. In conclusion, standard laboratory procedures fairly well approximate DNA degradation of FFPE samples and DNA degradation does not seem to considerably affect locus-specific methylation assessment by MS-HRM.
Collapse
Affiliation(s)
- Iben Daugaard
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Build. 1230, DK-8000 Aarhus C, Denmark.
| | - Tina E Kjeldsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Build. 1230, DK-8000 Aarhus C, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, Nørrebrogade 45, DK-8000 Aarhus C, Denmark
| | - Lise Lotte Hansen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Build. 1230, DK-8000 Aarhus C, Denmark
| | - Tomasz K Wojdacz
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Build. 1230, DK-8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
40
|
Spitzwieser M, Holzweber E, Pfeiler G, Hacker S, Cichna-Markl M. Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer. Breast Cancer Res 2015; 17:125. [PMID: 26370119 PMCID: PMC4570691 DOI: 10.1186/s13058-015-0637-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 08/27/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction It has been shown in some articles that genetic and epigenetic abnormalities cannot only be found in tumor tissues but also in adjacent regions that appear histologically normal. This phenomenon is metaphorically called field cancerization or field defect. Field cancerization is regarded as clinically significant because it is assumed to be an important factor in local recurrence of cancer. As the field showing these molecular abnormalities may not be removed completely by surgery, these changes might lead to neoplasms and subsequent transformation to a tumor. We aimed to investigate the applicability of the methylation status of six tumor suppressor genes as biomarkers for detecting field cancerization in breast cancer. Methods The promoter methylation status of CCND2, DAPK1, GSTP1, HIN-1, MGMT and RASSF1A was determined by methylation-sensitive high-resolution melting (MS-HRM) analysis. MS-HRM methods for CCND2, MGMT and RASSF1A were developed in-house, primer sequences for DAPK1, GSTP1 and HIN-1 have already been published. Biopsy samples were taken from tumor, tumor-adjacent and tumor-distant tissue from 17 breast cancer patients. Normal breast tissues of four healthy women served as controls. Results All MS-HRM methods proved to be very sensitive. LODs were in the range from 0.1 to 1.5 %, LOQs ranged from 0.3 to 5.3 %. A total of 94 %, 82 % and 65 % of the tumors showed methylation of RASSF1A, HIN-1 and MGMT promoters, respectively. The methylation status of these promoters was significantly lower in tumor-distant tissues than in tumor tissues. Tumor-adjacent tissues showed higher methylation status of RASSF1A, HIN-1 and MGMT promoters than tumor-distant tissues, indicating field cancerization. The methylation status of the HIN-1 promoter in tumor-adjacent tissues was found to correlate strongly with that in the corresponding tumors (r = 0.785, p < 0.001), but not with that in the corresponding tumor-distant tissues (r = 0.312, p = 0.239). Conclusions Among the gene promoters investigated, the methylation status of the HIN-1 promoter can be considered the best suitable biomarker for detecting field cancerization. Further investigation is needed to test whether it can be used for defining surgical margins in order to prevent future recurrence of breast cancer.
Collapse
Affiliation(s)
- Melanie Spitzwieser
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| | - Elisabeth Holzweber
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
41
|
Yoon J, Park MK, Lee TY, Yoon YJ, Shin Y. LoMA-B: a simple and versatile lab-on-a-chip system based on single-channel bisulfite conversion for DNA methylation analysis. LAB ON A CHIP 2015; 15:3530-9. [PMID: 26194344 DOI: 10.1039/c5lc00458f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Miniaturized lab-on-a-chip (LOC) systems have been developed for genetic and epigenetic analyses in clinical applications because of advantages such as reduced sample size and reagent consumption, rapid processing speed, simplicity, and enhanced sensitivity. Despite tremendous efforts made towards developing LOC systems for use in the clinical setting, the development of LOC systems to analyze DNA methylation, which is an emerging epigenetic marker causing the abnormal silencing of genes including tumor suppressor genes, is still challenging because of the gold standard methods involving a bisulfite conversion step. Existing bisulfite conversion-based techniques are not suitable for clinical use due to their long processing time, labor intensiveness, and the purification steps involved. Here, we present a lab-on-a-chip system for DNA methylation analysis based on bisulfite conversion (LoMA-B), which couples a sample pre-processing module for on-chip bisulfite conversion and a label-free, real-time detection module for rapid analysis of DNA methylation status using an isothermal DNA amplification/detection technique. The methylation status of the RARβ gene in human genomic DNA extracted from MCF-7 cells was analyzed by the LoMA-B system within 80 min (except 16 h for sensor preparation) compared to conventional MS-PCR within 24 h. Furthermore, the LoMA-B system is highly sensitive and can detect as little as 1% methylated DNA in a methylated/unmethylated cell mixture. Therefore, the LoMA-B system is an efficient diagnostic tool for the simple, versatile, and quantitative evaluation of DNA methylation patterns for clinical applications.
Collapse
Affiliation(s)
- Jaeyun Yoon
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 11 Science Park Road, Singapore Science Park II, Singapore 117685.
| | | | | | | | | |
Collapse
|
42
|
Wojdacz TK, Windeløv JA, Thestrup BB, Damsgaard TE, Overgaard J, Hansen L. Identification and characterization of locus-specific methylation patterns within novel loci undergoing hypermethylation during breast cancer pathogenesis. Breast Cancer Res 2014; 16:R17. [PMID: 24490656 PMCID: PMC3978461 DOI: 10.1186/bcr3612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Despite similar clinical and pathological features, large numbers of breast cancer patients experience different outcomes of the disease. This, together with the fact that the incidence of breast cancer is growing worldwide, emphasizes an urgent need for identification of new biomarkers for early cancer detection and stratification of patients. Methods We used ultrahigh-resolution microarrays to compare genomewide methylation patterns of breast carcinomas (n = 20) and nonmalignant breast tissue (n = 5). Biomarker properties of a subset of discovered differentially methylated regions (DMRs) were validated using methylation-sensitive high-resolution melting (MS-HRM) in a case–control study on a panel of breast carcinomas (n = 275) and non-malignant controls (n = 74). Results On the basis of microarray results, we selected 19 DMRs for large-scale screening of cases and controls. Analysis of the screening results showed that all DMRs tested displayed significant gains of methylation in the cancer tissue compared to the levels in control tissue. Interestingly, we observed two types of locus-specific methylation, with loci undergoing either predominantly full or heterogeneous methylation during carcinogenesis. Almost all tested DMRs (17 of 19) displayed low-level methylation in nonmalignant breast tissue, independently of locus-specific methylation patterns in cases. Conclusions Specific loci can undergo either heterogeneous or full methylation during carcinogenesis, and loci hypermethylated in cancer frequently show low-level methylation in nonmalignant tissue.
Collapse
|
43
|
Wojdacz TK. Methylation-sensitive high-resolution melting in the context of legislative requirements for validation of analytical procedures for diagnostic applications. Expert Rev Mol Diagn 2014; 12:39-47. [DOI: 10.1586/erm.11.88] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Lin YZ, Chang PL. Colorimetric determination of DNA methylation based on the strength of the hydrophobic interactions between DNA and gold nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12045-12051. [PMID: 24199674 DOI: 10.1021/am403863w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A simple, novel colorimetric nanosensor for DNA methylation based on the strength of hydrophobic interaction between DNA and gold nanoparticles was proposed. The nanosensing of oligonucleotides with four nitrogen bases was first demonstrated by dividing the bases into two groups (A/T and C/G) using the representative colors that correspond to Watson-Crick base pairing. By treatment of the genomic DNA with sodium bisulfite followed by PCR amplification, the methylation level of nasopharyngeal carcinoma cells treated with 5-aza-2'-deoxycytidine for up to 5 days could be discriminated by naked eye observation. Furthermore, 12 cancer cell lines that demonstrate heterogeneity with respect to DNA methylation could also be distinguished using the nanosensor, even for amplicons as long as 342 bp. These results demonstrate that the proposed colorimetric nanosensor could potentially be useful in epigenetic studies.
Collapse
Affiliation(s)
- Yi-Zhen Lin
- Department of Chemistry, Tunghai University , Taichung 40704, Taiwan
| | | |
Collapse
|
45
|
Jain S, Wojdacz TK, Su YH. Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer. Expert Rev Mol Diagn 2013; 13:283-94. [PMID: 23570406 DOI: 10.1586/erm.13.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation is ubiquitous in human cancer and has been shown to occur early during carcinogenesis, thus providing attractive potential biomarkers for the early detection of cancer. The introduction of genome-wide DNA methylation analysis comparing tumor and nonmalignant tissues resulted in the discovery of many regions that undergo aberrant methylation during carcinogenesis. Those regions can potentially be used as biomarkers for cancer detection. However, a biomarker will be useful for screening or early detection of cancer only if it can be detected in a noninvasive or minimally invasive fashion without tissue biopsy. The authors discuss the challenges in translating DNA methylation biomarkers to cancer diagnosis - including obstacles in assay development, tissue-specific methylation load on tumor suppressor genes, detecting markers with sufficient sensitivity and specificity in the periphery, and ways in which these obstacles can be overcome.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 18901, USA
| | | | | |
Collapse
|
46
|
Zhang H, Shan L, Wang X, Ma Q, Fang J. A novel bisulfite-microfluidic temperature gradient capillary electrophoresis platform for highly sensitive detection of gene promoter methylation. Biosens Bioelectron 2012; 42:503-11. [PMID: 23246658 DOI: 10.1016/j.bios.2012.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/30/2023]
Abstract
The hypermethylated tumor suppressor gene promoters are widely recognized as promising markers for cancer screening and ideal targets for cancer therapy, however, a major obstacle in their clinical study is highly sensitive screening. To address this limitation, we developed a novel bisulfite-microfluidic temperature gradient capillary electrophoresis (bisulfite-μTGCE) platform for gene methylation analysis by combining bisulfite treatment and slantwise radiative heating system-based μTGCE. Bisulfite-treated genomic DNA (gDNA) was amplified with universal primers for both methylated and unmethylated sequences, and introduced into glass microfluidic chip to perform electrophorectic separation under a continuous temperature gradient based on the formation of heteroduplexes. Eight CDKN2A promoter model fragments with different number and location of methylation sites were prepared and successfully analyzed according to their electrophoretic peak patterns, with high stability, picoliter-scale sample consumption, and significantly increased detection speed. The bisulfite-μTGCE could detect methylated gDNA with a detection limit of 7.5pg, and could distinguish as low as 0.1% methylation level in CDKN2A in an unmethylated background. Detection of seven colorectal cancer (CRC) cell lines with known and unknown methylation statuses of CDKN2A promoter and 20 tumor tissues derived from CRC patients demonstrated the capability of detecting hypermethylation in real-world samples. The wider adaptation of this platform was further supported by the detection of the CDKN2A and MLH1 promoters' methylation statuses in combination. This highly sensitive, fast, and low-consumption platform for methylation detection shows great potential for future clinical applications.
Collapse
Affiliation(s)
- Huidan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang, Liaoning 110001, PR China
| | | | | | | | | |
Collapse
|
47
|
Slaats GG, Reinius LE, Alm J, Kere J, Scheynius A, Joerink M. DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm. Allergy 2012; 67:895-903. [PMID: 22564189 DOI: 10.1111/j.1398-9995.2012.02831.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epigenetic regulation has been suggested to be a link between environmental intrauterine exposures and development of asthma and allergy. The placenta is an essential part of the intrauterine environment. We have previously found the innate immune receptor CD14 to be differentially expressed on the mRNA level in placentas in relation to lifestyle and parental allergen sensitization. We here hypothesized that the promoter region of CD14 may be subject to differential DNA methylation and therefore a link between intrauterine exposure and mRNA expression. METHODS Ninety-four placentas from the ALADDIN (Assessment of Lifestyle and Allergic Disease During Infancy) study were investigated. We used methylation-sensitive high-resolution melting (MS-HRM) analysis to semi-quantitatively analyze the DNA methylation of the promoter region of CD14 in 36 placentas known to have different CD14 mRNA expression. EpiTYPER was used to validate the MS-HRM data and to analyze an additional 58 placentas selected on mothers living on a farm or not. RESULTS MS-HRM analysis on 36 placenta samples revealed a relation between methylation of the CD14 promoter region with the level of CD14 mRNA expression. The MS-HRM and EpiTYPER data correlated highly significantly. EpiTYPER analysis of the additional 58 placentas demonstrated that DNA methylation in the CD14 promoter was significantly lower in placentas of mothers living on a farm compared with mothers not living on a farm. CONCLUSION Our data suggest that epigenetic regulation of CD14 in placenta might be involved in the protective effect of 'living on a farm', with regard to allergy development.
Collapse
Affiliation(s)
| | - Lovisa E. Reinius
- Department of Biosciences and Nutrition; Karolinska Institutet; Stockholm; Sweden
| | - Johan Alm
- Department of Clinical Science and Education; Karolinska Institutet, Södersjukhuset, Sachs' Children's Hospital; Stockholm; Sweden
| | | | - Annika Scheynius
- Department of Medicine Solna; Translational Immunology Unit, Karolinska Institutet; Stockholm; Sweden
| | - Maaike Joerink
- Department of Medicine Solna; Translational Immunology Unit, Karolinska Institutet; Stockholm; Sweden
| |
Collapse
|
48
|
Hihath J, Guo S, Zhang P, Tao N. Effects of cytosine methylation on DNA charge transport. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:164204. [PMID: 22466008 DOI: 10.1088/0953-8984/24/16/164204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.
Collapse
Affiliation(s)
- Joshua Hihath
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
49
|
Wojdacz TK. The limitations of locus specific methylation qualification and quantification in clinical material. Front Genet 2012; 3:21. [PMID: 22403582 PMCID: PMC3288818 DOI: 10.3389/fgene.2012.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/02/2012] [Indexed: 01/22/2023] Open
Abstract
The terms methylation quantification and qualification seem self-explanatory however, the results of experiments aiming to quantify or qualify locus specific methylation in clinical material are often difficult to interpret. There are three main reasons for difficulties in understanding methylation status measurement. First, the complexity of locus specific methylation patterns, which oscillate between unmethylated, fully methylated, and heterogeneously methylated. Second the interpretation of methylation-screening results can frequently be problematic due to limitations of the methods used. And finally the specifications of the clinical samples used in laboratory practice frequently hamper the methylation measurement. Thus, the process of quantification and qualification of methylation has to be discussed with consideration of the specific locus analyzed, the methodology used, and the clinical material source used in each specific experiment. The question of the clinical significance of determination of different methylation levels is even more complicated, with substantial evidence for correlation between qualitative methylation changes and clinical features of the disease and at the same time no data showing that different relative levels of methylation alter the disease outcome. The limitations of methylation quantification and qualification are discussed in this mini-review.
Collapse
Affiliation(s)
- Tomasz K Wojdacz
- The Lundbeck Foundation Centre for International Research in Radiation Oncology Aarhus C, Denmark
| |
Collapse
|
50
|
Fürst RW, Meyer HHD, Schweizer G, Ulbrich SE. Is DNA methylation an epigenetic contribution to transcriptional regulation of the bovine endometrium during the estrous cycle and early pregnancy? Mol Cell Endocrinol 2012; 348:67-77. [PMID: 21802491 DOI: 10.1016/j.mce.2011.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022]
Abstract
Epigenetic events controlling the transcriptional regulation of genes involved in endometrial function during the estrous cycle and early pregnancy have only sparsely been investigated. We analyzed the gene expression of DNA methyltransferases and the most prominent endocrine transcriptional mediator estrogen receptor alpha (ESR1) in the bovine endometrium of heifers at 0, 12 and 18 days following estrous and at day 18 after insemination. The luminometric methylation assay for the investigation of global DNA methylation and an elegant combination of methylation-sensitive high resolution melting and pyrosequencing for local methylation levels of ESR1 were deployed. In spite of differential gene expression of ESR1 among groups, no differences in endometrial ESR1 DNA methylation during neither estrous cycle nor early pregnancy were determined. Global DNA methylation prevailed at similar low levels in endometrium, likely controlled by the observed moderate DNMT3b expression. Thus, the epigenetic contribution of DNA methylation influencing endometrial function seems rather limited. However, because a control tissue expressing only minute amounts of ESR1 transcripts was locally significantly higher methylated, DNA methylation might contribute to an appropriate tissue-specific expression status underlying further specific control mechanisms of gene transcription.
Collapse
Affiliation(s)
- Rainer W Fürst
- Physiology Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|